27.05.2013 Views

Light-harvesting chlorophyll c-like pigment in Prochloron

Light-harvesting chlorophyll c-like pigment in Prochloron

Light-harvesting chlorophyll c-like pigment in Prochloron

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Proc. Natl. Acad. Sci. USA<br />

Vol. 91, pp. 679-683, January 1994<br />

Microbiology<br />

<strong>Light</strong>-<strong>harvest<strong>in</strong>g</strong> <strong>chlorophyll</strong> c-<strong>like</strong> <strong>pigment</strong> <strong>in</strong> <strong>Prochloron</strong><br />

(endosymbiosis/phylogeny/Prochlorophyta)<br />

A. W. D. LARKUM*, C. SCARAMUZZI*, G. C. Cox*, R. G. HILLERt, AND A. G. TURNERt<br />

*School of Biological Sciences and Electron Microscope Unit, University of Sydney, Sydney, NSW 2006, Australia; tSchool of Biological Sciences, Macquarie<br />

University, North Ryde, NSW 2113, Australia; and tBiological Sciences, Sydney Institute of Technology, Ultimo, NSW 2007, Australia<br />

Communicated by Andrew A. Benson, August 5, 1993<br />

ABSTRACT A <strong>chlorophyll</strong> c-<strong>like</strong> <strong>pigment</strong>, similar to magnesium-3,8-div<strong>in</strong>yl<br />

pheoporphyr<strong>in</strong> as monomethyl ester, has<br />

been isolated from <strong>Prochloron</strong> sp. obta<strong>in</strong>ed from five species of<br />

didemnid ascidians from the Great Barrier Reef, Australia,<br />

and from Palau, Micronesia. The <strong>pigment</strong> represents 4-15% of<br />

the total <strong>chlorophyll</strong> content and is shown to function <strong>in</strong> a<br />

light-<strong>harvest<strong>in</strong>g</strong> <strong>pigment</strong> prote<strong>in</strong> complex of <strong>Prochloron</strong>. The<br />

observation that all of the major <strong>chlorophyll</strong>s (a+b+c) function<br />

<strong>in</strong> a light-<strong>harvest<strong>in</strong>g</strong> role <strong>in</strong> <strong>Prochloron</strong> and possibly <strong>in</strong> other<br />

prochlorophytes is discussed <strong>in</strong> terms of the phylogeny of the<br />

prochlorophytes.<br />

The discovery of <strong>Prochloron</strong> sp., a symbiotic prokaryotic<br />

alga with <strong>chlorophyll</strong> (Chl) b and Chl a (1, 2), stimulated<br />

debate as to the orig<strong>in</strong> of chloroplasts. Discussion has cont<strong>in</strong>ued<br />

to the present time, fueled by the recent discoveries of<br />

two other prochlorophytes-the filamentous freshwater alga<br />

Prochlorothrix hollandica (3) and the small, unicellular,<br />

free-liv<strong>in</strong>g planktonic alga Prochlorococcus mar<strong>in</strong>us (4).<br />

Some view the prochlorophytes as allied to the ancestors of<br />

green chloroplasts (4, 5), while others consider them as<br />

members of the cyanobacteria, which have lost phycobiliprote<strong>in</strong>s<br />

and ga<strong>in</strong>ed Chl b, probably <strong>in</strong>dependently, <strong>in</strong> each<br />

group (6-10). The presence of a Chl c-<strong>like</strong> <strong>pigment</strong>, tentatively<br />

identified as magnesium 3,8-div<strong>in</strong>ylphaeoporphyr<strong>in</strong> a5<br />

monomethyl ester (MgDVP), has been claimed for Prochlorococcus<br />

(4, 11), although only the peak wavelengths of the<br />

natural and demetallated <strong>pigment</strong> were provided (11). It also<br />

has been claimed that MgDVP occurs <strong>in</strong> Prochlorothrix<br />

hollandica (11) <strong>in</strong> low concentrations. Here we present<br />

evidence, based on the spectra of <strong>pigment</strong>s resolved by<br />

th<strong>in</strong>-layer chromatography (TLC) and high-performance liquid<br />

chromatography (HPLC), that a Chl c-<strong>like</strong> <strong>pigment</strong> tentatively<br />

identified as MgDVP occurs <strong>in</strong> <strong>Prochloron</strong> <strong>in</strong> concentrations<br />

that are 4-15% of the total Chl. Moreover, the<br />

<strong>pigment</strong> is shown to be located <strong>in</strong> a light-<strong>harvest<strong>in</strong>g</strong> Chl<br />

<strong>pigment</strong>-prote<strong>in</strong> complex (LHC) and to act as a light<strong>harvest<strong>in</strong>g</strong><br />

<strong>pigment</strong>.<br />

MATERIALS AND METHODS<br />

<strong>Prochloron</strong> spp. were isolated from five didemnid ascidians<br />

(Table 1) at One Tree Reef, Capricorn Section, Great Barrier<br />

Reef, as described (15).<br />

Analysis of the <strong>pigment</strong>s of<strong>Prochloron</strong> was done on site by<br />

reverse-phase HPLC us<strong>in</strong>g a Waters 600E quaternary pump<br />

system with a Waters 990 photodiode array detector and a<br />

Shimadzu RF-551 spectrofluorimeter. The reverse-phase<br />

system was used with a C18 column (3.9 x 150 mm Waters<br />

Novapak 36975; 4-,um particle size, spherical end-capped<br />

material with a low carbon load), and gradient elution with<br />

acetonitrile/methanol/water (method 1) was applied as fol-<br />

The publication costs of this article were defrayed <strong>in</strong> part by page charge<br />

payment. This article must therefore be hereby marked "advertisement"<br />

<strong>in</strong> accordance with 18 U.S.C. §1734 solely to <strong>in</strong>dicate this fact.<br />

679<br />

lows: <strong>in</strong>itial conditions, 95% solvent A/5% solvent B; l<strong>in</strong>ear<br />

gradient to 1% A/99% B <strong>in</strong> 15 m<strong>in</strong>; and then held at 1%<br />

A/99%o B for 15 m<strong>in</strong> [solvent A = 50% water/25% acetonitrile/25%<br />

methanol (vol/vol); solvent B = 50% acetonitrile/<br />

50% methanol (vol/vol); flow rate, 2 ml m<strong>in</strong>-1].<br />

Further analyses used (i) TLC with polyethylene (Super<br />

Rylan 7007, sample no. PRX 1013, Koppers, Warr<strong>in</strong>gton, PA)<br />

and with acetone as the mobile phase or (ii) the same<br />

polyethylene used <strong>in</strong> an HPLC system (16) (hand-packed 4.6<br />

x 250 mm steel column) with a step solvent system (method<br />

2) as follows: system preequilibrated with 65% acetone/35%<br />

water; step gradient to 100% acetone at 0 m<strong>in</strong> and cont<strong>in</strong>ued<br />

for 15 m<strong>in</strong>; flow rate, 2 ml m<strong>in</strong>-1.<br />

Eluant from the Chl peaks separated by HPLC was collected,<br />

frozen, and freeze-dried under vacuum. Pigments<br />

were redissolved <strong>in</strong> 90% acetone/10% water, 100% acetone,<br />

or 100% ether, and their spectra were analyzed <strong>in</strong> a Beckman<br />

DU-8 spectrophotometer. Chl ratios were determ<strong>in</strong>ed on site<br />

<strong>in</strong> 90% acetone/10% water by us<strong>in</strong>g an Hitachi U-2000<br />

spectrophotometer and the trichromatic equation of Jeffrey<br />

and Humphrey (13). Demetallated Chl (i.e., removal of Mg<br />

from the porphyr<strong>in</strong> r<strong>in</strong>g) was produced by add<strong>in</strong>g 50 ,4 of 0.1<br />

M HCl to 2-4 ml of acetone or ether extracts. The LHC of<br />

<strong>Prochloron</strong> was isolated as described (15). Low-temperature<br />

(77 K) fluorescence spectra were measured with a Perk<strong>in</strong><br />

Elmer 44B Fluorimeter.<br />

Micromonas pusilla (culture CS-86 from the Culture Collection,<br />

CSIRO Fisheries, Hobart, Tasmania) was grown <strong>in</strong><br />

GP medium (17) under natural but low light (maximum, 200<br />

,uE-m-2s-1).<br />

RESULTS AND DISCUSSION<br />

Analysis by HPLC <strong>in</strong> the field of the 90% acetone extracts of<br />

each of five isolates revealed the presence of a <strong>chlorophyll</strong><br />

c-<strong>like</strong> <strong>pigment</strong> (Table 1) that was eluted at 14 m<strong>in</strong>; Chl a, Chl<br />

b, and carotenoids were also present. A typical elution profile<br />

and an on-l<strong>in</strong>e spectrum of the Chl c-<strong>like</strong> <strong>pigment</strong> are shown<br />

<strong>in</strong> Fig. 1. Comparisons (not shown) of the extracts from<br />

<strong>Prochloron</strong> with a brown alga (possess<strong>in</strong>g Chl cl + c2) and a<br />

d<strong>in</strong>oflagellate (Chl c2) <strong>in</strong>dicated that the HPLC system separated<br />

the Chl c-<strong>like</strong> <strong>pigment</strong> from Chl c1 and Chl c2, which<br />

themselves were partially separable from each other.<br />

The use of HPLC <strong>in</strong> the field was crucial for the discovery<br />

of the Chl c-<strong>like</strong> <strong>pigment</strong>(s) <strong>in</strong> <strong>Prochloron</strong>. At present<br />

<strong>Prochloron</strong> cannot be cultured (18), and didemnid ascidians,<br />

the major source of material, release acids when handled.<br />

Thus, unless fresh material is extracted and processed carefully<br />

and immediately, Chl breakdown products (e.g., <strong>chlorophyll</strong>ides<br />

and pheoporphyr<strong>in</strong>s) can be generated, which<br />

would obscure the presence of Chl c-<strong>like</strong> <strong>pigment</strong>s. However,<br />

further laboratory work was necessary, us<strong>in</strong>g polyethylene<br />

chromatography (14, 16, 19), to verify the presence of Chl<br />

Abbreviations: Chl, <strong>chlorophyll</strong>; BChl, bacterio<strong>chlorophyll</strong>; LHC,<br />

light-<strong>harvest<strong>in</strong>g</strong> Chl <strong>pigment</strong>-prote<strong>in</strong> complex; MgDVP, magnesium<br />

3,8-div<strong>in</strong>ylphaeoporphyr<strong>in</strong> a5 monomethyl ester.


680 Microbiology: Larkum et al.<br />

Table 1. The ratios of Chl a/b- and Chl a/c-<strong>like</strong> <strong>pigment</strong> found<br />

by reverse-phase HPLC analysis (method 1) for <strong>Prochloron</strong> sp.<br />

from five didemnid ascidians collected at One Tree Reef,<br />

Capricorn Section, Great Barrier Reef<br />

Species of ascidian host for <strong>Prochloron</strong> sp. Chl a/b Chl a/c-<strong>like</strong><br />

Didemnum molle (Herdmann, 1886) 3.1 15.8<br />

Diplosoma virens (Hartmeyer, 1908) 2.9 5.0<br />

Lissocl<strong>in</strong>um patella (Gottschaldt, 1898) 3.1 6.2<br />

Lissocl<strong>in</strong>um bistratum (Sluiter, 1905) 7.6 9.6<br />

Trididemnum paracyclops (Kott, 1980) 3.55 6.1<br />

Quantitation based on absorbance of <strong>in</strong>dividual peaks and ext<strong>in</strong>ction<br />

coefficients <strong>in</strong> methanol (12). Note that 90% acetone/10%o water<br />

extracts of the symbionts gave similar values for the Chl a/b ratio<br />

and, surpris<strong>in</strong>gly, also for the Chl a/c-<strong>like</strong> ratio (13), despite the<br />

difference <strong>in</strong> absorption maximum of Chl c and MgDVP <strong>in</strong> the red<br />

region of the spectrum (14).<br />

c-<strong>like</strong> <strong>pigment</strong>s. Thus, carefully prepared frozen or freezedried<br />

samples of <strong>Prochloron</strong> from L. patella were further<br />

analyzed <strong>in</strong> Sydney (the frozen samples came from a site at<br />

15-m depth near Lizard Island, Great Barrier Reef; the<br />

freeze-dried samples were a gift to G.C.C. from R. Lew<strong>in</strong> and<br />

were collected <strong>in</strong> Palau, Micronesia). TLC analysis (14, 19)<br />

revealed the presence of two Chl c-<strong>like</strong> compounds that had<br />

a significantly greater Rf value than those of either Chl c1 or<br />

Chl c2 (Fig. 2) and migrated <strong>in</strong> the relative position ofMgDVP<br />

(14, 19). There is also evidence from the fluorescence spectra<br />

of two related <strong>pigment</strong>s (see below). The presence of a Chl<br />

c-<strong>like</strong> <strong>pigment</strong> was also confirmed by reverse-phase HPLC<br />

with a polyethylene column, but only one broad peak was<br />

resolved (Fig. 3). The spectral peaks of the compound(s)<br />

eluted at 7.9 m<strong>in</strong> (Fig. 3 Lower, solid curve) (438 nm, 576 nm,<br />

and 626 nm-<strong>in</strong> 90% acetone/10% water) agree well with<br />

those of MgDVP (14, 19) <strong>in</strong> the same solvent. With extracts<br />

of brown algae or d<strong>in</strong>oflagellates, Chl c1 or Chl c2 or both<br />

were eluted later (not shown). The spectral peaks of the<br />

demetallated Chl c-<strong>like</strong> <strong>pigment</strong> (Table 2) (419 nm, 568 nm,<br />

and 588 nm) match well with those of demetallated MgDVP<br />

(11, 20). In addition, cells ofM. pusilla were extracted <strong>in</strong> 90%<br />

0<br />

0<br />

.0<br />

0<br />

.0<br />

0.2<br />

ol 1<br />

Time, m<strong>in</strong><br />

300 500<br />

Wavelength, nm<br />

700<br />

FIG. 1. (Upper) An elution profile (Adet = 440 mm) of the 90%o<br />

acetone extract of <strong>Prochloron</strong> sp. from Diplosoma virens separated<br />

by reverse-phase HPLC (method 1; see Table 1) on a Novapak C18<br />

column (Table 1). Bands: a, Chl a; b, Chl b; c, Chl c-<strong>like</strong> <strong>pigment</strong>;<br />

others, carotenoids. (Lower) On-l<strong>in</strong>e spectrum of Chl c-<strong>like</strong> <strong>pigment</strong><br />

eluted as band c at 14.4 m<strong>in</strong>. [This band was also detected by<br />

fluorescence emission <strong>in</strong> the red region of the spectrum (excitation,<br />

440 nm) with a maximum at 635 nm (not shown).]<br />

0<br />

co<br />

0 .0<br />

Q<br />

Proc. Natl. Acad. Sci. USA 91 (1994)<br />

O carotenoids<br />

* phaeophyt<strong>in</strong>s<br />

0 chi a(±b)<br />

@ chl c-<strong>like</strong><br />

e chl c-<strong>like</strong><br />

* chl c1<br />

0 chl c2<br />

* Orig<strong>in</strong><br />

A B C D E F<br />

o'<br />

. 0<br />

0 0 @ 0<br />

* 0 0 0 - -<br />

% a) 440 nm<br />

.07 . b)438 nm<br />

.05<br />

.05 .04 a<br />

.03b .03<br />

I 1 500 600<br />

Wavelength, nm<br />

FIG. 2. (Upper) Diagram of a developed th<strong>in</strong>-layer chromatogram<br />

(14) of the follow<strong>in</strong>g 90% acetone extracts. Lanes: A, Endarachne<br />

b<strong>in</strong>ghamiae (Phaeophyta); B, Colpomenia s<strong>in</strong>uosa (Phaeophyta); C,<br />

<strong>Prochloron</strong> sp. (L. patella from Palau); D, <strong>Prochloron</strong> sp. (L. patella<br />

from Lizard Island); E, Pavlova lutheri (Prymnesiophyta); F, Amphid<strong>in</strong>ium<br />

carterae (Pyrrophyta). The develop<strong>in</strong>g solvent was acetone.<br />

In lane C only the lower Chl c-<strong>like</strong> <strong>pigment</strong> was clearly visible,<br />

s<strong>in</strong>ce the upper Chl c-<strong>like</strong> <strong>pigment</strong> was overla<strong>in</strong> by an orange<br />

<strong>pigment</strong>, probably a carotenoid. (Lower) Spectra of two Chl c-<strong>like</strong><br />

<strong>pigment</strong>s <strong>in</strong> 90% acetone from lane D <strong>in</strong> Upper. Spectra: a, spectrum<br />

of lower Chl c-<strong>like</strong> (stippled) <strong>pigment</strong>; b, spectrum ofupper Chl c-<strong>like</strong><br />

(hatched) <strong>pigment</strong>. (Amax for the major peak of a and b spectra are<br />

shown.)<br />

acetone/10% water and analyzed by HPLC with a C18<br />

column (method 1). A Chl c-<strong>like</strong> <strong>pigment</strong> was present, which<br />

was coeluted with the major Chl c-<strong>like</strong> <strong>pigment</strong> from <strong>Prochloron</strong>.<br />

It also had similar spectral properties to the Chl c-<strong>like</strong><br />

<strong>pigment</strong> of <strong>Prochloron</strong> (Table 2). The Chl c-<strong>like</strong> <strong>pigment</strong> <strong>in</strong><br />

Micromonas spp. has been tentatively identified as MgDVP<br />

(12, 14, 19) on the basis of its spectral properties and elution<br />

characteristics on TLC and HPLC.<br />

MgDVP has a fully unsaturated porphyr<strong>in</strong> macrocycle and<br />

does not carry a long-cha<strong>in</strong> esterify<strong>in</strong>g alcohol at C-17 and<br />

differs from Chl c2 only <strong>in</strong> the presence at C-17 of a propionic<br />

acid <strong>in</strong>stead of an acrylic acid (14). Evidence suggests that<br />

MgDVP is an <strong>in</strong>termediate <strong>in</strong> the pathway of Chl a [and<br />

bacterio<strong>chlorophyll</strong> (BChl)] biosynthesis (21). It was first<br />

documented <strong>in</strong> the photosynthetic bacterium Rhodobacter<br />

sphaeroides grown <strong>in</strong> the presence of 8-hydroxyqu<strong>in</strong>ol<strong>in</strong>e,<br />

but it probably occurs also <strong>in</strong> some mutants ofR. sphaeroides<br />

as a result of a lesion <strong>in</strong> the normal synthesis of BChl (21).<br />

MgDVP was also identified as a <strong>pigment</strong> ofunknown function<br />

<strong>in</strong> several mar<strong>in</strong>e flagellates (22) <strong>in</strong>clud<strong>in</strong>g the pras<strong>in</strong>ophyte<br />

M. pusilla, where it has s<strong>in</strong>ce been shown to be present <strong>in</strong> an<br />

LHC as a light-<strong>harvest<strong>in</strong>g</strong> <strong>pigment</strong> (23, 24). However, it<br />

should be po<strong>in</strong>ted out that the precise structure of the Chl<br />

c-<strong>like</strong> <strong>pigment</strong> <strong>in</strong> M. pusilla and the related alga Mantoniella<br />

squamata is debated (12, 20) [both algae are placed <strong>in</strong> the<br />

special group, the micromonadophytes (25)]. MgDVP is also<br />

probably present <strong>in</strong> the prochlorophyte Prochlorococcus<br />

mar<strong>in</strong>us (11), although full details have yet to be documented.<br />

On the basis of the present evidence, we conclude that a chl<br />

c-<strong>like</strong> <strong>pigment</strong>, similar to MgDVP, occurs <strong>in</strong> <strong>Prochloron</strong> sp.<br />

together with a closely related <strong>pigment</strong>; however, both <strong>pigment</strong>s<br />

need to be further exam<strong>in</strong>ed by nuclear magnetic


0<br />

c<br />

0.<br />

co °0.1<br />

CO 0.15<br />

Microbiology: Larkum et al.<br />

0.1<br />

0.05<br />

0 2 4 6<br />

Time, m<strong>in</strong><br />

a<br />

573<br />

Wavelength, nm<br />

8 12<br />

FIG. 3. (Upper) Profile of <strong>pigment</strong>s extracted <strong>in</strong> 90%o acetone<br />

from <strong>Prochloron</strong> sp. (L. patella from Palau) and separated by<br />

reverse-phase HPLC on a polyethylene column (17) (method 2)<br />

monitored at 440 nm (the eluant was also monitored by a fluorescence<br />

detector, which confirmed the fluorescence of Chl c-<strong>like</strong> at 635 nm<br />

<strong>in</strong> the band eluted at 7.9 m<strong>in</strong>). Bands: a, Chl a + b; c, Chl c-<strong>like</strong>;<br />

others, carotenoids. Extracts from a brown alga E. b<strong>in</strong>ghamiae and<br />

a d<strong>in</strong>oflagellate alga A. carterae showed that Chl ci was eluted at 9.2<br />

m<strong>in</strong> and Chl c2 was eluted at 11.8 m<strong>in</strong>. (profiles not shown). (Lower)<br />

On-l<strong>in</strong>e spectrum of the Chl c-<strong>like</strong> band (c) eluted at 7.9 m<strong>in</strong>. (solid<br />

curve) and of the <strong>pigment</strong> extracted and chromatographed <strong>in</strong> the<br />

same position from the LHC (dashed curve).<br />

resonance spectroscopy. It is possible that only one of the<br />

<strong>pigment</strong>s is native and that the other is a product of the<br />

preparative procedures. We reject the possibility that both<br />

<strong>pigment</strong>s are the result of contam<strong>in</strong>ation by another alga or<br />

photosynthetic bacterium. The preparations used were monitored<br />

microscopically and showed less than 0.3% contam<strong>in</strong>ation<br />

on a cell count basis (


682 Microbiology: Larkum et al.<br />

U)<br />

0 657<br />

a:<br />

600 ~~720<br />

_<br />

636 628<br />

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _<br />

A, nm<br />

FIG. 4. Low-temperature (77 K) fluorescence emission spectra of the LHC isolated from <strong>Prochloron</strong> sp. (from L. patella found at 10-m depth<br />

on One Tree Reef). (A) Isolated LHC excited by light at 440 nm. (B) LHC extract <strong>in</strong> 95% acetone/10% water excited at 440 nm. (C) LHC extract<br />

<strong>in</strong> 95% acetone/5% water excited at 470 nm. (D) LHC <strong>in</strong> 2% SDS and heated to 70°C for 5 m<strong>in</strong>, excited at 440 nm. (E) LHC <strong>in</strong> 2% SDS and<br />

heated to 70°C for 5 m<strong>in</strong>, excited at 470 nm.<br />

procedure (15) as the LHC had no detectable levels of the Chl<br />

c-<strong>like</strong> <strong>pigment</strong>, although Chl a and b were present, as shown<br />

previously (15). This evidence suggests that the Chl c-<strong>like</strong><br />

<strong>pigment</strong> is not <strong>in</strong>timately connected to photosystem I. The<br />

nature and function of the major LHC <strong>in</strong> <strong>Prochloron</strong> sp. and<br />

the presence of other LHCs have yet to be fully elucidated.<br />

It may be similar to LHC II of chlorophytes and higher plants<br />

and therefore associated with photosystem II (15), but neither<br />

its molecular location nor its primary structure has been<br />

reported.<br />

The occurrence of Chls a, b, and c <strong>in</strong> a light-<strong>harvest<strong>in</strong>g</strong> role<br />

<strong>in</strong> <strong>Prochloron</strong> raises many <strong>in</strong>trigu<strong>in</strong>g questions. The presence<br />

of an identical or similar Chl c-<strong>like</strong> <strong>pigment</strong> to that <strong>in</strong><br />

<strong>Prochloron</strong> seems <strong>like</strong>ly <strong>in</strong> Prochlorococcus mar<strong>in</strong>us, although<br />

it has yet to be shown <strong>in</strong> the latter organism whether<br />

the <strong>pigment</strong> acts <strong>in</strong> a light-<strong>harvest<strong>in</strong>g</strong> capacity and is found <strong>in</strong><br />

an LHC. Is Prochlorothrix hollandica, the other prochlorophyte,<br />

similar? Prelim<strong>in</strong>ary <strong>pigment</strong> analysis of that organism<br />

<strong>in</strong>dicates that MgDVP may be present <strong>in</strong> low concentrations<br />

(11). If this is substantiated, then all three prochlorophytes<br />

are <strong>like</strong>ly to conta<strong>in</strong> the Chl c-<strong>like</strong> <strong>pigment</strong>, although it would<br />

still be necessary to show that it acts <strong>in</strong> a light-<strong>harvest<strong>in</strong>g</strong><br />

capacity. At the moment it is possible to say that <strong>Prochloron</strong><br />

sp. and possibly each of the three prochlorophytes are more<br />

closely allied to the micromonadophyte chloroplast l<strong>in</strong>e (25,<br />

28) than to any other chloroplast l<strong>in</strong>e on the evidence that<br />

they all share a Chl c-<strong>like</strong> <strong>pigment</strong>. However, the dist<strong>in</strong>ct<br />

differences <strong>in</strong> the LHCs between <strong>Prochloron</strong> (15) and<br />

Prochlorothrix (29) on the one hand (the type of LHC <strong>in</strong><br />

Prochlorococcus is not known) and the micromonadophytes<br />

on the other hand (20, 30) (where the LHC is of the chromophytic<br />

type) stand aga<strong>in</strong>st a close aff<strong>in</strong>ity between these<br />

two groups. The recent f<strong>in</strong>d<strong>in</strong>g of div<strong>in</strong>yl Chl a and b <strong>in</strong><br />

Prochlorococcus (4, 11) and the evidence that both <strong>Prochloron</strong><br />

and Prochlorococcus share the presence of a Chl c-<strong>like</strong><br />

<strong>pigment</strong> raise the possibility that div<strong>in</strong>yl <strong>chlorophyll</strong>s a and b<br />

also exist <strong>in</strong> <strong>Prochloron</strong>.<br />

The occurrence of a Chl c-<strong>like</strong> <strong>pigment</strong> and Chl b [or<br />

div<strong>in</strong>yl-Chl b (11)] <strong>in</strong> all of the prochlorophytes would<br />

weaken the argument that these organisms are merely cyanobacteria,<br />

where Chl b orig<strong>in</strong>ated <strong>in</strong>dependently <strong>in</strong> each of<br />

the three groups (7-10). We believe that the phylogenetic tree<br />

analysis on which that argument was based is flawed (31-33).<br />

Another explanation is that the prochlorophytes are an<br />

anciently diverged group (34) widely separated from the<br />

Proc. Natl. Acad. Sci. USA 91 (1994)<br />

Cyanobacteria, as orig<strong>in</strong>ally suggested (2). Thus, all three<br />

known prochlorophytes may be only very distantly related to<br />

the green chloroplast and may have diverged considerably<br />

from each other. F<strong>in</strong>ally, the present evidence lends support<br />

to the recent suggestion that Chl c-<strong>like</strong> <strong>pigment</strong>s were present<br />

<strong>in</strong> the earliest photosynthetic prokaryotes (28).<br />

We are grateful to Dr. S. W. Jeffrey for the supply of M. pusilla.<br />

This work was supported by the Australian Research Council (Small<br />

Grants).<br />

1. Lew<strong>in</strong>, R. A. (1975) Phycologia 14, 153-160.<br />

2. Lew<strong>in</strong>, R. A. (1977) Phycologia 16, 217.<br />

3. Burger-Wiersma, T., Veenhuis, M., Korthals, H. J., Van de<br />

Wiel, C. C. M. & Mur, R. (1986) Nature (London) 320, 262-<br />

264.<br />

4. Chisholm, S. W., Olson, R. J., Zettler, E. R., Goericke, R.,<br />

Waterbury, J. B. & Welschmeyer, N. A. (1988) Nature (London)<br />

334, 340-343.<br />

5. Palmer, J. (1985) Annu. Rev. Genet. 19, 325-354.<br />

6. Meyer, T. E., Cusanovich, M. A. & Kamen, M. D. (1986)<br />

Proc. Natl. Acad. Sci. USA 83, 217-220.<br />

7. Turner, S., Burger-Wiersma, T., Giovannoni, J., Mur, L. R. &<br />

Pace, N. R. (1989) Nature (London) 337, 380-385.<br />

8. Morden, C. W. & Golden, S. S. (1991) J. Mol. Evol. 32,<br />

379-395.<br />

9. Palenik, B. & Haselkorn, R. (1992) Nature (London) 355,<br />

265-267.<br />

10. Urbach, E., Robertson, D. L. & Chisholm, S. (1992) Nature<br />

(London) 355, 267-270.<br />

11. Goericke, R. & Repeta, D. J. (1992) Limnol. Oceanogr. 37,<br />

425-433.<br />

12. Wright, S. W., Jeffrey, S. W., Mantoura, R. F. C., Llewellyn,<br />

C. A., Bjornland, T., Repeta, D. & Welschmeyer, N. (1991)<br />

Mar. Ecol. Prog. Ser. 77, 183-196.<br />

13. Jeffrey, S. W. & Humphrey, G. P. (1975) Biochem. Physiol.<br />

Pflanzen (BPP) 167, 191-194.<br />

14. Jeffrey, S. W. & Wright, S. W. (1987) Biochim. Biophys. Acta<br />

894, 180-188.<br />

15. Hiller, R. G. & Larkum, A. W. D. (1985) Biochim. Biophys.<br />

Acta 806, 107-115.<br />

16. Shioi, Y. & Beale, S. 1. (1987) Anal. Biochem. 162, 493-499.<br />

17. Loeblich, A. R. & Smith, V. E. (1968) Lipids 9, 5-13.<br />

18. Lew<strong>in</strong>, R. A. & Cheng, L. (1989) <strong>Prochloron</strong>: A Microbial<br />

Enigma (Chapman Hall, New York).<br />

19. Jeffrey, S. W. (1989) <strong>in</strong> The Chromophytic Algae: Problems<br />

and Perspectives, eds. Green, J. C., Leadbetter, B. S. C. &<br />

Diver, W. L. (Clarendon, Oxford, U.K.), pp. 13-36.<br />

20. Wilhelm, C. (1987) Biochim. Biophys. Acta 892, 23-29.


21.<br />

22.<br />

23.<br />

24.<br />

25.<br />

26.<br />

27.<br />

28.<br />

Microbiology: Larkum et al.<br />

Jones, 0. T. G. (1979) <strong>in</strong> The Porphyr<strong>in</strong>s, ed. Dolph<strong>in</strong>, D.<br />

(Academic, New York), Vol. 6, pp. 179-230.<br />

Ricketts, T. R. (1966) Phytochemistry 5, 223-229.<br />

Brown, J. (1985) Biochim. Biophys. Acta 807, 1143-1146.<br />

Wilhelm, C., Lenartz-Weiler, I., Wiedemann, I. & Wild, A.<br />

(1986) Phycologia 25, 304-312.<br />

Fawley, M. W., Stewart, K. D. & Mattox, K. R. (1986) J. Mol.<br />

Evol. 23, 168-176.<br />

Larkum, A. W. D. & Barrett, J. (1983) Adv. Bot. Res. 10,<br />

1-219.<br />

Hiller, R. G., Larkum, A. W. D. & Wrench, P. (1988) Biochim.<br />

Biophys. Acta 932, 223-231.<br />

Larkum, A. W. D. (1991) <strong>in</strong> Chlorophylls, ed. Scheer, H.<br />

(CRC, Boca Raton, FL), pp. 367-383.<br />

Proc. Natl. Acad. Sci. USA 91(1994) 683<br />

29. Bullerjahn, G. S., Matthijs, H. C. P., Mur, L. R. & Sherman,<br />

L. A. (1987) Eur. J. Biochem. 168, 295-300.<br />

30. Herold, A., Schmitt, A., Wilhelm, C. & Wild, A. (1991)<br />

Photosynthetica 25, 645-653.<br />

31. Lockhart, P. J., Beanland, T. J., Howe, C. J. & Larkum,<br />

A. W. D. (1992) Proc. Natl. Acad. Sci. USA 89, 2742-2746.<br />

32. Lockhart, P. J., Penny, D., Hendy, M. D., Howe, C. J., Beanland,<br />

T. J. & Larkum, A. W. D. (1992) FEBS Lett. 301, 127-131.<br />

33. Lockhart, P. J. & Penny, D. (1993) <strong>in</strong> Research <strong>in</strong> Photosynthesis,<br />

ed. Murata, M. (Kluwer, Dordrecht, The Netherlands),<br />

Vol. 3, pp. 499-505.<br />

34. Larkum, A. W. D. (1993) <strong>in</strong> Research <strong>in</strong> Photosynthesis, ed.<br />

Murata, M. (Kluwer, Dordrecht, The Netherlands), Vol. 3, pp.<br />

475-482.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!