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Multidimensional scaling
Goal of Multidimensional scaling (MDS): Given pairwise
dissimilarities, reconstruct a map that preserves distances.

• From any dissimilarity (no need to be a metric)
• Reconstructed map has coordinates xi = (xi1, xi2) and the

natural distance (‖xi − xj‖2)
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Multidimensional scaling

• MDS is a family of different algorithms, each designed to
arrive at optimal low-dimensional configuration (p = 2 or 3)

• MDS methods include

1 Classical MDS
2 Metric MDS
3 Non-metric MDS
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Perception of Color in human vision

• To study the perceptions of color in human vision (Ekman,
1954, Izenman 13.2.1)

• 14 colors differing only in their hue (i.e., wavelengths from
434 µm to 674 µm)

• 31 people to rate on a five-point scale from 0 (no similarity at

all) to 4 (identical) for each of

(
14
2

)
pairs of colors.

• Average of 31 ratings for each pair (representing similarity) is
then scaled and subtracted from 1 to represent dissimilarities
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Perception of Color in human vision

The resulting 14× 14 dissimilarity matrix is symmetric, and
contains zeros in the diagonal. MDS seeks a 2D configuration to
represent these colors.

434 445 465 472 490 504 537 555 584 600 610 628 651

445 0.14

465 0.58 0.50

472 0.58 0.56 0.19

490 0.82 0.78 0.53 0.46

504 0.94 0.91 0.83 0.75 0.39

537 0.93 0.93 0.90 0.90 0.69 0.38

555 0.96 0.93 0.92 0.91 0.74 0.55 0.27

584 0.98 0.98 0.98 0.98 0.93 0.86 0.78 0.67

600 0.93 0.96 0.99 0.99 0.98 0.92 0.86 0.81 0.42

610 0.91 0.93 0.98 1.00 0.98 0.98 0.95 0.96 0.63 0.26

628 0.88 0.89 0.99 0.99 0.99 0.98 0.98 0.97 0.73 0.50 0.24

651 0.87 0.87 0.95 0.98 0.98 0.98 0.98 0.98 0.80 0.59 0.38 0.15

674 0.84 0.86 0.97 0.96 1.00 0.99 1.00 0.98 0.77 0.72 0.45 0.32 0.24
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Perception of Color in human vision
MDS reproduces the well-known two-dimensional color circle.
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Distance, dissimilarity and similarity

Distance, dissimilarity and similarity (or proximity) are defined for
any pair of objects in any space. In mathematics, a distance
function (that gives a distance between two objects) is also called
metric, satisfying

1 d(x , y) ≥ 0,

2 d(x , y) = 0 if and only if x = y ,

3 d(x , y) = d(y , x),

4 d(x , z) ≤ d(x , y) + d(y , z).

Given a set of dissimilarities, one can ask whether these values are
distances and, moreover, whether they can even be interpreted as
Euclidean distances
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Euclidean and non-Euclidean distance

Given a dissimilarity (distance) matrix D = (dij), MDS seeks to
find x1, . . . , xn ∈ Rp so that

dij ≈ ‖xi − xj‖2 as close as possible.

Oftentimes, for some large p, there exists a configuration
x1, . . . , xn with exact distance match dij ≡ ‖xi − xj‖2. In such a
case the distance d involved is called a Euclidean distance.
There are, however, cases where the dissimilarity is distance, but
there exists no configuration in any p with perfect match

dij 6= ‖xi − xj‖2 , for some i , j .

Such a distance is called non-Euclidean distance.
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non-Euclidean distance

• Radian distance function on a circle is a metric.

• Cannot be embedded in R. (Not for any Rp, not shown here)

• Nevertheless, MDS seeks to find an optimal configuration xi
that gives dij ≈ ‖xi − xj‖2 as close as possible.
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classical Multidimensional Scaling–theory

Suppose for now we have Euclidean distance matrix D = (dij).

The objective of classical Multidimensional Scaling (cMDS) is to
find X = [x1, . . . , xn] so that ‖xi − xj‖ = dij . Such a solution is not
unique, because if X is the solution, then X ∗ = X + c, c ∈ Rq also

satisfies
∥∥∥x∗i − x∗j

∥∥∥ = ‖(xi + c)− (xj + c)‖ = ‖xi − xj‖ = dij . Any

location c can be used, but the assumption of centered
configuration, i.e.,

n∑
i=1

xik = 0, for all k , (1)

serves well for the purpose of dimension reduction.
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classical Multidimensional Scaling–theory

In short, the cMDS finds the centered configuration
x1, . . . , xn ∈ Rq for some q ≥ n− 1 so that their pairwise distances
are the same as those corresponding distances in D.

We may find the n× n Gram matrix B = X ′X , rather than X . The
Gram matrix is the inner product matrix since X is assumed to be
centered. We have

d2
ij = bii + bjj − 2bij (2)

from ‖xi − xj‖2 = x ′i xi + x ′j xj − 2x ′i xj .
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classical Multidimensional Scaling–theory

The constraints (1) leads to

n∑
i=1

bij =
n∑

i=1

q∑
k=1

xikxjk =

q∑
k=1

xjk

n∑
i=1

xik = 0,

for j = 1, . . . , n.
With a notation T = trace(B) =

∑n
i=1 bii , we have

n∑
i=1

d2
ij = T + nbjj ,

n∑
j=1

d2
ij = T + nbii ,

n∑
j=1

n∑
i=1

d2
ij = 2nT . (3)
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classical Multidimensional Scaling–theory

Combining (2) and (3), the solution is unique:

bij = −1/2(d2
ij − d2

·j − d2
i · + d2

··)

or
B = −1/2CD2C .

A solution X is then given by the eigen-decomposition of B. That
is, for B = VΛV ′,

X = Λ1/2V ′. (4)
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classical Multidimensional Scaling–theory

The space which X lies is the eigenspace where the first coordinate
contains the largest variation, and is identified with Rq.

If we wish to reduce the dimension to p ≤ q, then the first p rows
of X(p) best preserves the distances dij among all other linear
dimension reduction of X (to p). Then

X(p) = Λ
1/2
p V ′p,

where Λp is the first p × p sub matrix of Λ, Vp is collected through
the first p columns of V .
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classical Multidimensional Scaling

• cMDS gives configurations X(p) in Rp for any dimension
p = 1, 2, . . . , q.

• Configuration is centered.

• The coordinates are given by the principal order of
largest-to-smallest variances.

• Dimension reduction from X = X(q) to X(p) (p < q) is same
as PCA.

• Leads exact solution for Euclidean distances

• Can be used for non-Euclidean distances, in fact, for any
dissimilarities.
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cMDS examples

• Consider two worked examples:
one with Euclidean geometry (tetrahedron–edge length 1),
the other from the circular geometry, shown below.

• And the airline distances example (Izenman 13.1.1)
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cMDS examples: tetrahedron
Pairwise distance matrix for tetrahedron (with distance 1)

D =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 ,

leading to the gram matrix B(4×4) with eigenvalues (.5, .5, .5, 0).
Using dimension p = 3, we have perfectly retrieved the
tetrahedron.
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cMDS examples: circular distances
Pairwise distance matrix

leading to the gram matrix B(4×4) with eigenvalues

diag(Λ) = (5.6117,−1.2039,−0.0000, 2.2234)

In retrieving the coordinate matrix X , we cannot take a squareroot
of Λ since it gives complex numbers.
Remedy: Keep only positive eigenvalues and corresponding
coordinates. In this case, take coordinates 1 and 4. This is the
price we pay in approximating non-Euclidean geometry by
Euclidean geometry.
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cMDS examples: circular distances
Using dimension p = 2 (cannot use p > 2), configuration X(2) is

Compare the original distance matrix D and approximated distance
matrix D̂ = ‖xi − xj‖2:

0 3.1416 0.7854 1.5708
3.1416 0 2.3562 1.5708
0.7854 2.3562 0 2.3562
1.5708 1.5708 2.3562 0

 , D̂ =


0 3.1489 1.4218 1.9784

3.1489 0 2.5482 1.8557
1.4218 2.5482 0 2.3563
1.9784 1.8557 2.3563 0
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cMDS examples: Airline distances
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cMDS examples: Airline distances

• Airline distance is non-Euclidean
• Take the first 3 largest eigenvalues (inspection of scree plot) 21 / 41



cMDS examples: Airline distances
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cMDS examples: Airline distances
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Distance Scaling

classical MDS
seeks to find an optimal configuration xi that gives
dij ≈ d̂ij = ‖xi − xj‖2 as close as possible.

Distance Scaling

• Relaxing dij ≈ d̂ij from cMDS by allowing

d̂ij ≈ f (dij), for some monotone function f .

• Called metric MDS if dissimilarities dij are quantitative

• Called non-metric MDS if dissimilarities dij are qualitative
(e.g. ordinal).

• Unlike cMDS, distance scaling is an optimization process
minimizing stress function, and is solved by iterative
algorithms.
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Metric MDS

The (usual) metric MDS

Given a (low) dimension p and a monotone function f , metric
MDS seeks to find an optimal configuration X ⊂ Rp that gives
f (dij) ≈ d̂ij = ‖xi − xj‖2 as close as possible.

• The function f can be taken to be a parametric monotonic
function, such as f (dij) = α + βdij .

• ‘As close as possible’ is now explicitly stated by square loss

stress = L(d̂ij) =

∑
i<j

(d̂ij − f (dij))2/
∑

d2
ij

 1
2

,

and the metric MDS minimizes L(d̂ij) over all d̂ij and α, β.

• The usual metric MDS is the special case f (dij) = dij ;
The usual metric MDS solution (from optimization) 6= that of
classical MDS.
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Metric MDS

Sammon mapping

• Sammon mapping is a generalization of the usual metric MDS.

• Sammon’s stress (to be minimized) is

Sammon’s stress(d̂ij) =
1∑

`<k d`k

∑
i<j

(d̂ij − dij)
2

dij

• This weighting system normalizes the squared-errors in
pairwise distances by using the distance in the original space.
As a result, Sammon mapping preserves the small dij , giving
them a greater degree of importance in the fitting procedure
than for larger values of dij

• Optimal solution is found by numerical computation (initial
value by cMDS).
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cMDS vs. Sammon Mapping

• Izenman Figure 13.9 (lower panel)

• Results of cMDS and Sammon mapping for p = 2: Sammon
mapping better preserves inter-distances for smaller
dissimilarities, while proportionally squeezes the
inter-distances for larger dissimilarities.
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Non-metric MDS

In many applications of MDS, dissimilarities are known only by
their rank order, and the spacing between successively ranked
dissimilarities is of no interest or is unavailable

Non-metric MDS
Given a (low) dimension p, non-metric MDS seeks to find an
optimal configuration X ⊂ Rp that gives f (dij) ≈ d̂ij = ‖xi − xj‖2
as close as possible.

• Unlike metric MDS, here f is much general and is only
implicitly defined.

• f (dij) = d∗ij are called disparities, which only preserve the
order of dij , i.e.,

dij < dk` ⇔ f (dij) ≤ f (dk`) (5)

⇔ d∗ij ≤ d∗k`

28 / 41



Kruskal’s non-metric MDS
• Kruskal’s non-metric MDS minimizes the stress-1

stress-1(d̂ij , d
∗ij) =

∑
i<j

(d̂ij − d∗ij )
2∑

d̂2
ij

 1
2

.

• Note that the original dissimilarities are only used in checking
(5). In fact only the order dij < dk` < ... < dmf among
dissimilarities is needed.

• the function f works as if it were a regression curve
(approximated dissimilarities d̂ij as y , disparities d∗ij as ŷ , and
the order of dissimilarities as explanatory)
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Example: Letter recognition

Wolford and Hollingsworth (1974) were interested in the
confusions made when a person attempts to identify letters of the
alphabet viewed for some milliseconds only. A confusion matrix
was constructed that shows the frequency with which each
stimulus letter was mistakenly called something else. A section of
this matrix is shown in the table below.

Is this a dissimilarity matrix?
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Example: Letter recognition

• How to deduce dissimilarities from a similarity matrix?
From similarities δij , choose a maximum similarity c ≥ max δij ,
so that dij = c − δij , if i 6= j , 0 if i = j .

• Which method is more appropriate?
Because we have deduced dissimilarities from similarities, the
absolute dissimilarities dij depend on the value of personally
chosen c . This is the case where the non-metric MDS makes
most sense.
However, we will also see that metric scalings (cMDS and
Sammon mapping) do the job as well.

• How many dimension?
By inspection of eigenvalues from the cMDS solution.
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Letter recognition
• First choose c = 21 = max δij + 1.
• Compare MDS with p = 2, from cMDS, Sammon mapping,

and non-metric scaling (stress1):
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Letter recognition:
• First choose c = 21 = max δij + 1.
• Compare MDS with p = 3, from cMDS, Sammon mapping,

and non-metric scaling (stress1):
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Letter recognition:

• Do you see any clusters?

• With c = 21 = max δij + 1, the eigenvalues of the
Gram-matrix B in the calculation of cMDS are:

508.5707

236.0530

124.8229

56.0627

39.7347

-0.0000

-35.5449

-97.1992

• The choice of p = 2 or p = 3 seems reasonable.
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Letter recognition
• Second choice of c = 210 = max δij + 190.
• Compare MDS with p = 2, from cMDS, Sammon mapping,

and non-metric scaling (stress1):
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Letter recognition:
• Second choice of c = 210 = max δij + 190.
• Compare MDS with p = 3, from cMDS, Sammon mapping,

and non-metric scaling (stress1):
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Letter recognition:

• With c = 210, the eigenvalues of the Gram-matrix B in the
calculation of cMDS are:

1.0e+04 *

2.7210

2.2978

2.1084

1.9623

1.9133

1.7696

1.6842

0.0000

• May need more than p > 3 dimensions.
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Letter recognition: Summary

• The structure of the data appropriate for non-metric MDS.

• Kruskal’s non-metric scaling:

1 Appropriate for non-metric dissimilarities (only when their
orders are preserved)

2 Optimization: susceptible to local minima (leading to different
configurations);

3 Time-consuming

• cMDS fast, overall good.

• Sammon mapping fails when c = 210.
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Letter recognition: Summary

• Clusters (C ,G ), (D,Q), (H,M,N,W ) are confirmed by a
cluster analysis for either choice of c .

Use agglomerative hierarchical clustering with average linkage:
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MDS in R

library(MASS)

# compute dissimilarity matrix from a dataset

d <- dist(swiss)

# d is (n x n-1) lower triangle matrix

cmdscale(d, k =2) # classical MDS

sammon(d,k=1) # Sammon Mapping

isoMDS(d,k=2) # Kruskal’s Non-metric MDS
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Application: Stringing

In K. Chen, K. Chen, H.G. Mueller and J.L. Wang (2011).
Stringing high dimensional data for functional analysis. JASA 106,
275-284.

Basic idea: Multivariate data to functional data

• Compute p × p dissimilarity matrix for p variables.

• Use MDS to retrieve 1-dimensional configuration consisting of
the p points.

• String variables by the order of variables given by MDS
configuration.

Many thanks to K. Chen for sharing the next few slides.
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Idea of Stringing



Why Stringing?

• Methods and results from low dimensional data can not be
directly applied to large p problems.

• Large p is not a problem for FDA, we have
√

n consistency for
covariance, leading eigenvalues and eigenfunctions.

• Smooth structure: G(s, t) = ∑
∞
k=1 λkφk(s)φk(t), with

∑
∞
k=1 λk < ∞.

• Neighbors defined over a continuum: Smoothing techniques for
noisy, irregular or missing data.



How to Perform Stringing

• Define a distance between p predictors and estimate the p×p
distance matrix D.

• Assign a location sj ∈ [0,1] to each predictor variable Xj to
minimize stress function

SD(s1, . . . ,sp) = ∑
j<k

(|sj− sk|−Djk)
2.

• Computational similar but conceptually different form MDS.
1. Preserve the dissimilarity between p variables not n samples.
2. The goal is not dimension reduction. The coordinate si is an

auxiliary location to define random functions.



Application in High-Dimensional Regression

Two key assumptions essential for current Lasso type methodology:

• Sparsity: Only very few predictors matter
• Uncorrelatedness: Correlations between predictors are small

What if predictors are highly correlated and effects are not sparse?

Stringing:
E(Y|X) = g−1(Xβ )

⇒ E(Y|Z) = g−1(µY +
∫

Z(s)β (s)ds)



Simulation Settings

Y = Xβ + ε

• cov(Xi,Xj) = σ(i, j) = U (0,1), chosen as i.i.d. uniform random
numbers, projected to non-negative definite matrix space

• Varying sparsity of regression coefficients, generated as
βj ∼U (0,1), j = 1, . . . ,p, where the fraction of nonzero
coefficients is controlled at 100%, 50%, 10%.

• Varying p, n, test sets of size 50 and 200 simulations



Functional Regression Versus LASSO



Stringing Gene Expressions
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