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Multidimensional scaling
Goal of Multidimensional scaling (MDS): Given pairwise
dissimilarities, reconstruct a map that preserves distances.
e From any dissimilarity (no need to be a metric)
¢ Reconstructed map has coordinates x; = (x;1, xj2) and the
natural distance (|[x; — x;||,)
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Multidimensional scaling

e MDS is a family of different algorithms, each designed to
arrive at optimal low-dimensional configuration (p = 2 or 3)
e MDS methods include

@ Classical MDS
® Metric MDS
©® Non-metric MDS
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Perception of Color in human vision

To study the perceptions of color in human vision (Ekman,
1954, Izenman 13.2.1)

14 colors differing only in their hue (i.e., wavelengths from
434 yum to 674 pum)

31 people to rate on a five-point scale from 0 (no similarity at

all) to 4 (identical) for each of (124

Average of 31 ratings for each pair (representing similarity) is
then scaled and subtracted from 1 to represent dissimilarities

) pairs of colors.



Perception of Color in human vision

The resulting 14 x 14 dissimilarity matrix is symmetric, and
contains zeros in the diagonal. MDS seeks a 2D configuration to
represent these colors.
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Coordinate 2
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Perception of Color in human vision
MDS reproduces the well-known two-dimensional color circle.

Non-metric MDS
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Distance, dissimilarity and similarity

Distance, dissimilarity and similarity (or proximity) are defined for
any pair of objects in any space. In mathematics, a distance
function (that gives a distance between two objects) is also called
metric, satisfying
® d(x,y) >0,
® d(x,y)=0ifandonlyif x=y
© d(x,y) =d(y,x),

© d(x,z) < d(x,y) +d(y,2).
Given a set of dissimilarities, one can ask whether these values are
distances and, moreover, whether they can even be interpreted as
Euclidean distances

y
y
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Euclidean and non-Euclidean distance
Given a dissimilarity (distance) matrix D = (dj;), MDS seeks to
find x1,...,x, € RP so that
djj =~ [|xj — xj||, as close as possible.

Oftentimes, for some large p, there exists a configuration
X1,...,Xp with exact distance match dj; = ||x; — x;|,. In such a
case the distance d involved is called a Euclidean distance.
There are, however, cases where the dissimilarity is distance, but
there exists no configuration in any p with perfect match

dij # ||xi — xj||,, for some i,;.

Such a distance is called non-Euclidean distance.
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non-Euclidean distance

e Radian distance function on a circle is a metric.

e Cannot be embedded in R. (Not for any RP, not shown here)
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e Nevertheless, MDS seeks to find an optimal configuration x;

that gives

i

~ ||x; — xj||, as close as possible.
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classical Multidimensional Scaling—theory

Suppose for now we have Euclidean distance matrix D = (dj;).

The objective of classical Multidimensional Scaling (cMDS) is to
find X = [x1,...,xp] so that ||x; — x;|| = dj;. Such a solution is not
unique, because if X is the solution, then X* = X + ¢, ¢ € R9 also
= [l(xi +¢) = (x5 + )l = lIxi — xil| = djj. Any
location ¢ can be used, but the assumption of centered
configuration, i.e.,

satisfies ‘

* *
X; *XJ-

n
ink =0, forall k, (1)
i=1

serves well for the purpose of dimension reduction.
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classical Multidimensional Scaling—theory

In short, the cMDS finds the centered configuration
X1,...,Xp € R9 for some g > n— 1 so that their pairwise distances
are the same as those corresponding distances in D.

We may find the n x n Gram matrix B = X’X, rather than X. The
Gram matrix is the inner product matrix since X is assumed to be

centered. We have
dj = bij + bjj — 2b; (2)

from ||x; — xJ||2 = X{X; + XXj — 2x];.
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classical Multidimensional Scaling—theory

The constraints (1) leads to
n n q q n
Dby =D > g =D xu ) ik =0,
i=1 i=1 k=1 k=1 i=1

forj=1,...,n.
With a notation T = trace(B) = Y_i_; bji, we have

; d? =T + nbj, g d? = T + nby;, 93 di =2nT.
ij ji ij ij
i—1 =1

j=1 i=1
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classical Multidimensional Scaling—theory

Combining (2) and (3), the solution is unique:
by = —1/2(dZ — d% — d? + d?)

or
B = —1/2CD,C.

A solution X is then given by the eigen-decomposition of B. That
is, for B = VAV/,
X = NY2V (4)
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classical Multidimensional Scaling—theory

The space which X lies is the eigenspace where the first coordinate
contains the largest variation, and is identified with R9.

If we wish to reduce the dimension to p < g, then the first p rows
of X(p) best preserves the distances dj; among all other linear
dimension reduction of X (to p). Then

A2
Xipy =N Vo,

where A, is the first p x p sub matrix of A, V), is collected through
the first p columns of V.
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classical Multidimensional Scaling

cMDS gives configurations X(,,) in RP for any dimension
p=12...,q.
Configuration is centered.

The coordinates are given by the principal order of
largest-to-smallest variances.

Dimension reduction from X = X(4) to X, (p < q) is same
as PCA.

Leads exact solution for Euclidean distances

Can be used for non-Euclidean distances, in fact, for any
dissimilarities.
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cMDS examples

e Consider two worked examples:
one with Euclidean geometry (tetrahedron—edge length 1),
the other from the circular geometry, shown below.
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e And the airline distances example (Izenman 13.1.1)
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cMDS examples: tetrahedron
Pairwise distance matrix for tetrahedron (with distance 1)

011

1
11

b= 0 1|’
10

=
= = O

leading to the gram matrix B4,4) with eigenvalues (.5,.5,.5,0).
Using dimension p = 3, we have perfectly retrieved the
tetrahedron.
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cMDS examples: circular distances

Pairwise distance matrix

Point, | a b c d
a 0.0000 3.1416 0.7854 1.5708
b 3.1416 0.0000 2.3562 1.5708
c 0.7854 2.3562 0.0000 2.3562
d 1.5708 1.53708 2.3562 0.0000

leading to the gram matrix B44) with eigenvalues
diag(A) = (5.6117,—1.2039, —0.0000, 2.2234)

In retrieving the coordinate matrix X, we cannot take a squareroot
of A since it gives complex numbers.

Remedy: Keep only positive eigenvalues and corresponding
coordinates. In this case, take coordinates 1 and 4. This is the
price we pay in approximating non-Euclidean geometry by
Euclidean geometry.
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cMDS examples: circular distances
Using dimension p = 2 (cannot use p > 2), configuration X(,) is

Compare the original distance matrix D and approximated distance
matrix D = [[x; — x;||5:

0 3.1416 0.7854 1.5708 0 3.1489 1.4218 1.9784
3.1416 0 2.3562 1.5708 p— 3.1489 0 2.5482 1.8557
0.7854 2.3562 0 2.3562 |’ 1.4218 2.5482 0 2.3563
1.5708 1.5708 2.3562 0 1.9784 1.8557 2.3563 0
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cMDS examples: Airline distances

TABLE 13.2. Airline distances (km) between 18 cities. Source: Atlas of
the World, Revised 6th Edition, National Geographic Society, 1995, p. 131.

Beijing Cape Town  Hong Kong Homolulu London  Melbourne
Cape Town 12947
Hong Kong 1972 11867
Honolulu 8171 18562 8945
London 8160 9635 9646 11653
Melbourne 0093 10338 7392 8862 16902
Mexico 12478 13703 14155 6098 8947 13557
Mentreal 10490 12744 12462 7915 5240 16730
Moscow 5809 10101 7158 11342 2506 14418
New Delhi 3788 9284 3770 11930 6724 10192
New York 11012 12551 12084 TO96 5586 16671
Paris 8236 307 9650 11988 341 16793
Rio de Janeiro 17325 6075 17710 13343 9254 13227
Rome 8144 8417 9300 12936 1434 15987
San Francisco 9524 16487 11121 3857 8640 12644
Singapore 4465 9671 2575 10824 10860 6050
Stockholm 6725 10334 8243 11059 1436 15593
Tokyo 2104 14737 2893 6208 9585 8159
Mexico Mentreal Moscow  New Delhi New York Paris
Mentreal 3728
Moscow 10740 7077
New Delhi 14679 11286 4349
New York 3362 533 7530 11779
Paris 9213 5522 2492 G601 5851
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cMDS examples: Airline distances

TABLE 13.6. Figenvalues of B and the eigenvectors corresponding to the
first three largest eigenvalues (in red) for the airline distances example.

Eigenvalues Eigenvectors
1 171582511 0.245  —0.072 0.183
2 316824787 0.003 0.502  -0.347
3 253943687 0.323 0,017 0.103
4 —98466163 0.044 0487 -0.080
5 —74912121 —0.145 0.144 0.205
6 —A47505007 0.366 0128 —0.569
7 31736348 -0.281 0275 0174
8 —T508328 -0.272 0115 0.094
9 4338497 -0.010 0.134 0.202
10 1747583 0.209 0.195 0.110
11 —1498641 -0.202 0117 0.061
12 145113 —-0.141 0.163 0.196
13 —102966 —0.364 0.172  -0.473
14 60477 —0.104 0.220 0.163
15 —6334 -0.140 -0.356 -0.009
16 —1362 0.375 0.139 -0.054
17 100 -0.074 0.112 0.215
18 0 0.260 -0.214 0.173

e Airline distance is non-Euclidean

e Take the first 3 largest eigenvalues (inspection of scree plot)
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cMDS examples: Airline distances
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FIGURE 13.1. Two-dimensional map of 18 world cities using the classi-
cal scaling algorithm on airline distances between those cities. The colors
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cMDS examples: Airline distances
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FIGURE 13.2. Three-dimensional map of 18 world cities using the clas-
sical sealing algorithm on airline distances between those cities. The colors
reflect the different continents: Asia (purple), North America (red), South
America (yellow), Europe (blue), Africa (brown), and Australasia (green).
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Distance Scaling
classical MDS

seeks to find an optimal configuration x; that gives
dij = djj = ||x;j — x;||, as close as possible.

Distance Scaling

e Relaxing djj ~ c?,J from cMDS by allowing
d;j ~ f(dj), for some monotone function f.

e Called metric MDS if dissimilarities dj; are quantitative
e Called non-metric MDS if dissimilarities dj; are qualitative
(e.g. ordinal).

e Unlike cMDS, distance scaling is an optimization process
minimizing stress function, and is solved by iterative
algorithms.
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Metric MDS
The (usual) metric MDS

Given a (low) dimension p and a monotone function f, metric
MDS seeks to find an optimal configuration X C RP that gives
f(dij) = djj = [|xj — x;||, as close as possible.
e The function f can be taken to be a parametric monotonic
function, such as f(dj) = a + fdj.

e 'As close as possible' is now explicitly stated by square loss

2

stress = £(djj) = Z( i — f(djj)) /Z di| .

i<j

and the metric MDS minimizes £(dj;) over all dj and a, j.

e The usual metric MDS is the special case f(dj;) = djj;
The usual metric MDS solution (from optimization) # that of
classical MDS.
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Metric MDS

Sammon mapping

e Sammon mapping is a generalization of the usual metric MDS.

e Sammon's stress (to be minimized) is

~ 1 d," _ d," 2
Sammon's stress(d;;) = Z (d i)
Z£<k dﬁk i<j d,J

e This weighting system normalizes the squared-errors in
pairwise distances by using the distance in the original space.
As a result, Sammon mapping preserves the small dj; , giving
them a greater degree of importance in the fitting procedure
than for larger values of dj;

e Optimal solution is found by numerical computation (initial
value by cMDS).

26
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cMDS vs. Sammon Mapping

1925-1929 Cohort: Classical Scaling

1925-1929 Cohort: Sammon Mapping

e lzenman Figure 13.9 (lower panel)

e Results of cMDS and Sammon mapping for p = 2: Sammon
mapping better preserves inter-distances for smaller
dissimilarities, while proportionally squeezes the
inter-distances for larger dissimilarities.
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Non-metric MDS

In many applications of MDS, dissimilarities are known only by
their rank order, and the spacing between successively ranked
dissimilarities is of no interest or is unavailable

Non-metric MDS
Given a (low) dimension p, non-metric MDS seeks to find an
optimal configuration X C RP that gives f(d;;) =~ djj = |x; — x;]|,
as close as possible.
e Unlike metric MDS, here f is much general and is only
implicitly defined.
o f(dj) = d;; are called disparities, which only preserve the
order of dj, i.e.,

d,‘j <dgy & f(du) < f(dkg) (5)
& d,jf < diy
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Kruskal's non-metric MDS
e Kruskal’'s non-metric MDS minimizes the stress-1

1
, (dy —dp)*\

stress-1(dj;, d*ij) = Z ——

i<j Zdij

e Note that the original dissimilarities are only used in checking
(5). In fact only the order djj < dy¢ < ... < dms among
dissimilarities is needed.

e the function f works as if it were a regression curve
(approximated dissimilarities c?,-j as y, disparities d,-j‘- as y, and
the order of dissimilarities as explanatory)
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FIGURE 13.10. Shepard diagram for the artificial ezample. Left panel:
Isotonic regression. Right panel: Monotone spline. Horizontal axis is rank
onder. For the red points, the vertical azis is the dissimilarity dij, whereas
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Example: Letter recognition

Wolford and Hollingsworth (1974) were interested in the
confusions made when a person attempts to identify letters of the
alphabet viewed for some milliseconds only. A confusion matrix
was constructed that shows the frequency with which each
stimulus letter was mistakenly called something else. A section of
this matrix is shown in the table below.

Letter [C D G H M N Q W
C _

D |5 -

G |12 2 -

H |2 4 3 -

M |2 3 219 -

N |2 4 118 16

Q 920 9 1 2 -
W |1 5 2 518 13 4 -

Is this a dissimilarity matrix?
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Example: Letter recognition

e How to deduce dissimilarities from a similarity matrix?
From similarities ¢;;, choose a maximum similarity ¢ > maxdj;,
sothat djj =c—d;, ifi#j 0ifi=].

e Which method is more appropriate?
Because we have deduced dissimilarities from similarities, the
absolute dissimilarities dj; depend on the value of personally
chosen c. This is the case where the non-metric MDS makes
most sense.
However, we will also see that metric scalings (cMDS and
Sammon mapping) do the job as well.

e How many dimension?
By inspection of eigenvalues from the cMDS solution.
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Letter recognition

e First choose ¢ = 21 = maxd;; + 1.
e Compare MDS with p = 2, from cMDS, Sammon mapping,
and non-metric scaling (stressl):
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251

cMDS Sammon mapping non-metric MDS
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Letter recognition:

e First choose ¢ = 21 = maxd;; + 1.
e Compare MDS with p = 3, from cMDS, Sammon mapping,
and non-metric scaling (stressl):

c [z
G 0
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e Do you see any clusters?

Letter recognition:

e With ¢ = 21 = max (5,-J- + 1, the eigenvalues of the
Gram-matrix B in the calculation of cMDS are:

508.
236.
124.
56.
39.
-0.
-35.
-97.

5707
0530
8229
0627
7347
0000
5449
1992

e The choice of p =2 or p = 3 seems reasonable.
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e Compare MDS with p = 2, from cMDS, Sammon mapping,

Letter recognition
e Second choice of ¢ = 210 = maxd;; + 190.

and non-metric scaling (stressl):
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Letter recognition:

Second choice of ¢ = 210 = maxJ;; + 190.
Compare MDS with p = 3, from cMDS, Sammon mapping,
and non-metric scaling (stressl):
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Letter recognition:

e With ¢ = 210, the eigenvalues of the Gram-matrix B in the
calculation of cMDS are:

1.0e+04 *

.7210
.2978
.1084
.9623
.9133
. 7696
.6842
.0000

O, Fr F ~ NDDNN

e May need more than p > 3 dimensions.
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Letter recognition: Summary

The structure of the data appropriate for non-metric MDS.
Kruskal's non-metric scaling:

@ Appropriate for non-metric dissimilarities (only when their
orders are preserved)

® Optimization: susceptible to local minima (leading to different
configurations);

© Time-consuming

cMDS fast, overall good.

Sammon mapping fails when ¢ = 210.
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Letter recognition: Summary

e Clusters (C,G), (D, Q), (H, M, N, W) are confirmed by a
cluster analysis for either choice of c.

Use agglomerative hierarchical clustering with average linkage:

4=21- 4=210-5

39 /41



MDS in R

library (MASS)

# compute dissimilarity matrix from a dataset
d <- dist(swiss)
# d is (n x n-1) lower triangle matrix

cmdscale(d, k =2) # classical MDS

sammon(d,k=1) # Sammon Mapping
isoMDS(d,k=2) # Kruskal’s Non-metric MDS
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Application: Stringing

In K. Chen, K. Chen, H.G. Mueller and J.L. Wang (2011).
Stringing high dimensional data for functional analysis. JASA 106,
275-284.

Basic idea: Multivariate data to functional data

e Compute p x p dissimilarity matrix for p variables.

e Use MDS to retrieve 1-dimensional configuration consisting of
the p points.

e String variables by the order of variables given by MDS
configuration.

Many thanks to K. Chen for sharing the next few slides.
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Idea of Stringing




Why Stringing?

Methods and results from low dimensional data can not be
directly applied to large p problems.

Large p is not a problem for FDA, we have \/n consistency for
covariance, leading eigenvalues and eigenfunctions.

Smooth structure: G(s,t) = Y AP (s) P (), with

Neighbors defined over a continuum: Smoothing techniques for
noisy, irregular or missing data.



How to Perform Stringing

e Define a distance between p predictors and estimate the p X p
distance matrix D.

e Assign a location s; € [0, 1] to each predictor variable X; to
minimize stress function

Sp(st,--.5p) = Y (s — sl = D).
<k
e Computational similar but conceptually different form MDS.

1. Preserve the dissimilarity between p variables not n samples.
2. The goal is not dimension reduction. The coordinate s; is an
auxiliary location to define random functions.



Application in High-Dimensional Regression

Two key assumptions essential for current Lasso type methodology:

e Sparsity: Only very few predictors matter

e Uncorrelatedness: Correlations between predictors are small

What if predictors are highly correlated and effects are not sparse?

Stringing:



Simulation Settings

Y=XB+¢

cov(X;,X;) = o(i,j) = % (0,1), chosen as i.i.d. uniform random
numbers, projected to non-negative definite matrix space

Varying sparsity of regression coefficients, generated as
Bi~(0,1),j=1,...,p, where the fraction of nonzero
coefficients is controlled at 100%, 50%, 10%.

Varying p, n, test sets of size 50 and 200 simulations



Functional Regression Versus LASSO
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Subjects

Stringing Gene Expressions
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