Category Archives: Weimar and Nazi Germany

Blohm & Voss Bv 238

Nazi flag Nazi Germany (1942)
Transport Floatplane – 1 Built

BV238 on the Water [Colorization by Michael Jucan]
With the success of the previous Blohm & Voss Bv 222 flying boat, Dr. Ing. Richard Vogt, chief designer at Blohm & Voss, began working on an even larger improved design in the form of the Blohm & Voss Bv 238. As the Bv 238 development began in the late stages of the war, only one aircraft was ever completed and used only briefly.

Dr. Ing. Richard Vogt’s Work

In 1937, Lufthansa opened a tender for a long-range passenger flying boat transport that would be able to reach New York in 20 hours. Blohm & Voss eventually would go on to win this tender. The chosen aircraft was the Blohm & Voss Bv 222, designed by Dr. Ing. Richard Vogt.

During 1941, Dr. Ing. Richard Vogt began working on a new aircraft larger even than the already huge Blohm & Voss Bv 222. In July the same year, he presented to the RLM, the German ministry of aviation (Reichsluftfahrtministerium), the plans for the new Blohm & Voss Bv 238. This aircraft was, in essence, a modified and enlarged version of the Bv 222 powered by six Daimler-Benz DB 603 engines. Three aircraft powered with this engine were to be built, belonging to the A-series. Six more aircraft were to be powered by six BMW 801 engines and these would be designated as B-series.

To speed up the development and avoid wasting resources if the project proved to be unsuccessful, the RLM officials asked for a smaller scale flying model to be built first instead of a working prototype. This scale model plane was named FG 227 (or FGP 227, depending on the source) and was to be built and tested at Flugtechnische Fertigungsgemeinschaft GmbH located in Prague.

The FG 227 scale flying model

To speed up the development and avoid wasting resources, the RLM officials asked for a smaller scale flying model to be built first. How it turned out the FG 227’s overall performance was disappointing and it didn’t play any major role in the Bv 238 development. [Histaviation]
The construction of this scale model was undertaken by a group of Czech students under the direction of well-known glider pilot Dipl.Ing. Ludwig Karch. It was to be powered by six ILO Fl 2/400 engines pushing 21 hp each. As it was meant to be tested on the ground and not in water, the FG 227 was provided with landing gear which consisted of two wheels in the nose and two more wheels placed on each side of the fuselage.

The small scale model, designated the FG 227 [Histaviation]
When the FG 227 was completed, it was to be flight tested. From the start, there were issues with it, as it was unable to takeoff under its own power. After the unsuccessful start, it was disassembled and transported to Travemünde for future testing. During transport, French prisoners of war deliberately damaged one of the wings. Once the damage was repaired, it was flight tested. But during the flight, made in September 1944, all six engines stopped working, which caused an accident where the FG 227 was damaged. After yet another major repair, a few more flights were carried out. The FG 227’s overall performance was disappointing and it didn’t play any major role in the Bv 238 development.

The FG 227’s small scale engines being serviced [Histaviation]
The Bv 238

Rear view of the Bv 238 [Warbird Photographs]
Construction of the first Bv 238 parts began in early 1942. The final assembly was not possible until January 1944. Due to a shortage of materials and the increasing assaults by the Allied Air Forces, the Bv 238 V1 first prototype could not be completed until March of 1945. The first flight test we conducted immediately after its completion. However, sources do not agree on the exact year when this happened. This is the timeline of development and construction according to author  H. J. Nowarra.

Author M. Griehl states that the first flight test was made on the 11th of March 1944. Author C. R. G. Bain states, according to post war testimonies of Dr. Ing. Richard Vogt, that the first test flight was actually made in 1943. According to D. Nešić, the first flight was made in April 1944. The results of this test flight showed that the Bv 238 prototype had surprisingly excellent flying performance. For this reason, it was immediately put into operational service.

Front view of the Bv 238 with the nose hatch doors open [Warbird Photographs]
Throughout the Bv 238 development phase, it was often discussed precisely which role it could fulfill. While it was primarily designed as a transport plane, a new idea was proposed to act as a U-boat support aircraft. This would include carrying supplies, fuel, torpedos and men to the U-boats operating in the Atlantic. Of course, by the time the first prototype was near completion, the war was almost over, so this proposal was realistically not possible. Plans to use it as a long range bomber, carrying six 2,400 kg bombs, also never materialized.

Bv 238 V1 was meant to operate from Shaalsee, and for its service with the Luftwaffe, it received the RO+EZ designation. As the Allied bombing raids effectively destroyed the Blohm & Voss factory in Hamburg, orders came down to hide the Bv 238 from the Allied Air Force. The question was how to hide such a huge aircraft. The Germans did try to do so but the aircraft was eventually found by the Allies who managed to sink it. The circumstances are not clear to this day, as both Americans and the British pilots claimed the kill. According to the most well-known story, it was destroyed by a group of American P-51 Mustangs belonging to the 131st Fighter Group. The kill was made by the leading P-51 piloted by Lt. Urban Drew. According to the testimony of the Blohm & Voss workers, the British, in their advance discovered the hidden craft. Once spotted, the British sent attack aircraft to sink it. Its remains would finally be blown up during 1947 or 1948 to make the scrapping process easier. All the remaining Bv 238 that were under construction were also scrapped after the war.

Technical Characteristics

The Bv 238 was designed as a six-engined, high wing, flying transport floatplane. The Bv 238 fuselage was divided into two decks. On the upper deck, the crew and the inboard equipment were housed. The lower floor was designed as a storage area during transport flights. In theory, there was enough room for around 150 soldiers in the Bv 238. A huge front hatch door was provided for easy access to the fuselage interior.

The wings were constructed using large tubular main spars. The wings were used to provide additional room for spare fuel and oil tanks. The wings were provided with flaps  running along the trailing edge. The large size of the wing construction allowed passageways for the crew to be installed, in order to have easy access to the engines. Unlike the Bv 222, which had a pair of outboard stabilizing floats mounted on each side, the Bv 238 had only two. The Bv 238 was powered by six Daimler DB 603G engines.

For self defense, the Bv 238 was to be provided with two HD 151 twin-gun turrets with 20 mm (0.78 in) MG 151 cannons, two HL 131 V turrets with four 13 mm (0.51 in) MG 131 machine-guns and two additional MG 131s mounted in the fuselage sides. Despite the plans to arm the V1 prototype, this was never done.

The crew number is mentioned as 11 or 12 depending on the source. The sources do not specify the role they performed. It can be assumed, based on what is known from Bv 222, that there were at least two pilots, two mechanics, a radio operator and machine gun operator.

Production

Despite being based on the large Bv 222, the Bv 238 was even larger [Warbird Photographs]
The production of the Bv 238 was carried out by Blohm & Voss factory at Hamburg. Only one completed prototype would be built during the war. There were also at least two to six more prototypes under construction (depending on the source), but due to the war ending, none were completed.

The small number under construction may be explained by the fact that, in the late stages of the war, the Luftwaffe was more in need of fighter planes than transports planes. In addition, there is a possibility that the Bv 238 project was actually canceled by the RLM officials.

Versions

  • Bv 238 A – Powered by Daimler-Benz DB 603 engines, only one built
  • Bv 238 B – Powered by six MW 801 engines, none built
  • Bv 250 – Land based version, none built
  • FG 227 – Scale test model of the Bv 238, used for testing

Land Based Version

There were plans to adapt the Bv 238 for land based operations by adding landing gear wheels. The project was designated Bv 250 but none were ever built. It was planned to provide this version with heavy defence armament consisting of twelve 20 mm (0.78 in) MG 151 cannons. The engine chosen for this model was the six Jumo 222. As this engine was never built in any large numbers, the DB 603 was meant to be used instead.

Escape Aircraft

There are some rumors that the Bv 238 was actually developed as an escape aircraft for high ranking Nazi officials. It was rumored that Martin Bormann had plans to use it to escape Germany in early 1945. Of course, due to Allied Air Force supremacy and the Bv 238’s large size, this may have not been a viable plan if ever attempted.

Conclusion

The V1 Prototype after its maiden test flight [Warbird Photographs]
If it was put into production, the Bv 238 would have had the honor of being the largest flying boat that saw service during the war. While it only performed test flights and was never used operationally, it was nevertheless an astonishing engineering achievement.

Blohm & Voss BV 238 V1 Specifications

Wingspan 196 ft / 60 m
Length 145 ft / 43.4 m
Height 35 ft 9 in / 10.9 m
Wing Area 3,875 ft² / 360 m²
Engine Six 2900 hp Daimler-Benz DB 603
Empty Weight 120,500 lb / 54,660 kg
Maximum Takeoff Weight 207,990 lb / 94,340 kg
Maximum Speed 220 mph / 355 km/h
Cruising Speed 210 mph / 335 km/h
Range 3,790 mi / 6,100 km
Maximum Service Ceiling 20,670 ft / 6,300 m
Crew
  • 11-12 (2 pilots, 9 airmen)
Armament
  • none

Gallery

The sole completed Bv238V1 Prototype by Ed Jackson

Credits

 

Fieseler Fi 167

Nazi flag Nazi Germany (1938)
Torpedo Bomber – 14 Built

The Fi 167 was developed out of a need for a dedicated torpedo-bomber to be operated on the first German aircraft carrier. While its overall performance proved to be satisfactory, due to the cancellation of the aircraft carrier project, only a small number were ever built. Unfortunately, information about the Fi 167 is not available or precise enough, with many disagreements between different authors.

Fieseler Flugzeugbau

In the early 1930’s, World War I fighter veteran Gerhard Fieseler (1896–1987) bought the Segelflugzeugbau Kassel Company, which mostly produced gliders, and renamed it to Fieseler Flugzeugbau. Gerhard Fieseler had gained experience in aircraft design while working as a flight instructor for the Raab-Katzenstein Aircraft Company in Kassel. In 1926, he managed to design his first aircraft, named Fieseler F1, which would be built by the Raab-Katzenstein company. By the end of twenties, Gerhard Fieseler designed another aircraft, the Raab-Katzenstein RK-26 Tigerschwalbe, of which 25 were built and sold to Swedish Air Force.

With his own company, he changed to focus on sports aircraft. In 1935, Gerhard Fieseler managed to obtain a licence for the production of military aircraft. While his best known design was the Fi 156 ‘Storch,’ he also designed the less known Fi 167 torpedo-bomber. The Fi 167 was built in small numbers and never managed to reach the fame of the Storch.

History of the Fi 167

Engine view of the Fi 167. [Valka.cz]
As the German Navy began construction of its first aircraft carrier, the ‘Graf Zeppelin,’ in 1937, there was a need for a completely new torpedo bomber. For this reason, the German Ministry of Aviation (Reichsluftfahrtministerium) opened a tender for all German aircraft manufacturers who wished to participate to present their designs for such aircraft. The new aircraft was requested to have folding biplane wings, the best possible STOL (short take-off and landing) capabilities, and that the whole construction should have sufficient strength to successfully endure offensive combat operations at high speeds.

Only two manufacturers, Fieseler and Arado, presented their designs. For Fieseler it was the Fi 167 and for Arado the design was the Ar 195. In the summer of 1938, after a series of flight tests, the Fieseler Fi 167 was declared the better design. For this reason, another prototype was to be built for further testing.

The first prototype built, Fi 167 V1 (serial no. 2501), was powered by a DB 601 A/B engine. It was used mainly for testing and evaluation purposes. The second prototype (serial no. 2502) had some changes to the design, such as a modified undercarriage and was powered by the DB 601B. This engine would be used on later production versions. While most sources state that only two prototypes were built, some authors, like M. Griehl (X-Planes German Luftwaffe Prototypes 1930-1945), mention a third prototype being built. This third prototype, Fi 167 V3 (serial no. 2503), according to Griehl, was used to test the equipment used on this plane. While the sources do not give precise details about the fate of the Fi 167 prototypes, after May 1940, they were not present in the Luftwaffe inventory anymore. This may indicate that all three were scraped. After a number of tests with the Fi 167 were completed, series production of 80 aircraft was ordered.

Short lived operational service life

Fi 167 during flight in German service [Nature & Tech]
Despite having promising overall performance, the Fi 167 was directly connected with the Graf Zeppelin project. While the production of a small series was underway, the construction of the Graf Zeppelin aircraft carrier was stopped in 1940, so the same fate befell the Fi 167, as there was no longer a need for a carrier capable fighter. In 1942, there was a brief revival of the aircraft carrier concept, but by that time the Ju 87C was deemed better suited for this role. This decision was not without merit, as the Ju 87 was already in production and it would be much easier, quicker, and cheaper to simply modify it for the role of aircraft carrier torpedo bomber than to put the Fi 167 back into production.

As a small number of 12 Fi 167 A-0 were built, they were sent to Holland for evaluation and testing purposes in order not to waste the resources invested in them. These were used to form Erprobungstaffel 167 which operated in Holland from 1940 to 1942. In 1943, the Fi 167 were returned to Germany and Erprobungstaffel 167 was disbanded. Their use by the Germans from 1943 onward is not completely clear in the sources. While the majority were given to Germany’s allies in late 1944, the final fate of the remaining aircraft is not known, but they were probably either lost or scrapped.

Technical characteristics

Designed to operate from an aircraft carrier, the folding wings were necessary [Nature & Tech]
The Fi 167 was an all-metal, single engine biplane designed as a torpedo bomber. The Fi 167’s fuselage was constructed by using thin but with high-strength steel tubes that were welded together and then covered with duralumin sheet metal.

In the glazed cockpit there was room for two crew members, the pilot and the observer/rear gunner. The cockpit was covered with plexiglass but was open to the rear in order to provide the rear gunner with a good arc of fire. The Fi 167 was powered by the Daimler-Benz DB 601B 12-cylinder inverted-V engine putting out 1,100 horsepower. The total fuel load was 1,300 liters.

The Fieseler Fi 167 had a biplane layout. The upper and lower wings were the same in size and had a rectangular shape with rounded edges. The wings were divided into three parts in order to make any necessary maintenance or disassembly easier. Being designed to be used on an aircraft carrier, the Fi 167’s wings could also be folded. In order to be adequately structurally stable, the upper and the lower wings were interconnected by ‘N’ shaped metal rods. There were four of these ‘N’ shaped metal rods in total. These were then held in place with steel cables. For better control during flight, both wings were provided with flaps.

The landing gear consisted of two independent fixed landing wheels which were provided with shock absorbers to ease the landing. The forward landing gear units were covered with duralumin coating to help reduce the aerodynamic drag. To the rear there was a smaller fixed landing wheel. The Fi 167 landing gear was designed to be easily discarded in the case of a forced landing on water. The idea was that it would enable the Fi 167 to float on the water surface and thus provide more time for the crew to successfully evacuate the aircraft.

The armament consisted of two machine guns, one forward mounted 7.92 mm MG 17 with 500 rounds of ammunition and a second MG 15 of the same caliber mounted in a rear, flexible mount with 600 rounds of ammunition. The Fi 167 could be additionally armed with up to 2,200 lbs (1,000 kg) of bombs or one torpedo. In some sources, it is mentioned that there were actually two forward mounted machine guns.

Production

The German Navy was trying to build its first aircraft carrier, the Graf Zeppelin, but due to various reasons it was never completed. [Vaz]
The Fi 167 production run was quite limited, mostly due to cancellation of the Graf Zeppelin aircraft carrier. Besides the two or three prototypes, only a small series of Fi 167 (A-0) pre-production aircraft were made. How many were built varies depending on the source. Authors C. Chant (Pocket Guide: Aircraft Of The WWII) and D. Nešić (Naoružanje Drugog Svetskog Rata Nemačka) mention that, besides two prototypes, 12 pre-production aircraft were built. Authors F. A. Vajda and P. Dancey (German Aircraft Industry And Production 1933-1945) give a number of 15 aircraft produced. They also mention that a serial production of 80 Fi 176 was to be completed by June 1941 but, due to the cancelation of the project, this was never achieved. On different internet websites, the total number of Fi 167 built varies between 14 and 29.

  • Fi 167 V1 – Powered by the DB 601 A/B engine.
  • Fi 167 V2 – Had modified undercarriage and was powered by the DB 601B engine.
  • Fi 167 V3 – Possibly-built third prototype, but sources are not in agreement about its existence.
  • Fi 167A-0 – 12 aircraft built.

In Romanian hands?

It is commonly stated in many sources that the Fi 167 were sold to Romania in 1943. These were allegedly used to patrol the Black Sea. This is likely incorrect, as another German ally, the Independent State of Croatia ‘NDH,’ received nearly all Fi 167 produced. There is a possibility that the Fi 167 were given to Romanians and then returned back to Germany. But due to the lack of any valid documentation, this is only speculation at best.

In NDH service

Fi 167 (serial no. 4808) in NDH service. This is the aircraft that pilot Romeo Adum deserted to the Partisan side. [Vaz]
A group of 11 (or 10 depending on the source) Fi 167 (serial no. 4801-4812) arrived in NDH during September 1944. These aircraft were given to the 1st Squadron stationed in Zagreb for the necessary pilot training. While during its service in the NDH, the Fi 167 was used in bombing combat operations, but was mostly used as a transport plane for food and ammunition. Due to having no problem carrying significant loads and its ability to take off or to land on short airfields, they were ideal for supplying many NDH garrisons besieged by Yugoslav Partisans.

Due to the overall difficult situation of the Axis forces on all fronts, the NDH Army and Air Force were plagued with frequent desertions, including a number of pilots. On 25th September 1944, while flying a Fi 167 (serial no. 4808), pilot Romeo Adum escaped to the Yugoslav Partisan held airfield at Topusko.

There is an interesting story about one Fi 167 piloted by Mate Jurković, as it is claimed he managed to avoid being shot down by five American P-51 Mustangs. This engagement happened on 10th October 1944 during a Fi 167 ammunition supply mission to Bosanska Gradiška. During this flight, the Fi 167 was attacked by a group of five Mustangs. Outgunned and outnumbered, the pilot could only hope to escape by using the Fi 167’s excellent maneuverability at lower altitudes. He eventually managed to escape his pursuers without taking any damage.

Due to a lack of spare parts, Allied air supremacy and Partisan advance, by April 1945 there were only four Fi 167 still present in the NDH Air Force. The condition of these planes is not known. Of these, at least three would be used after the war by the new JNA (Yugoslav People’s Army) army. During its operational use by the NDH Air Force, the Fi 167 was known as ‘The Great Fiesler’.

In Partisan hands

The Fi 167 operated by the Yugoslav Partisans during the war. The Red Star can be seen painted under the lower wings. [paluba.info]
As mentioned earlier, the Partisans managed to acquire one Fi 167. It would be redeployed to the island of Vis and included in the group of NDH aircraft that had defected earlier (one FP 2, two Saiman 200s, one Bü 131, and one Fiat G. 50).

On the 17th of October 1944, while on a liaison mission from Vis to the village of Vrdovo, after delivering orders to the command of the Partisan 20th Division stationed there, the Fi 167 piloted by M. Lipovšćak and with General Ćetković as a passenger began taking to the sky. Unfortunately for them, a group of four P-51 Mustangs attacked the lone aircraft. The Fi 167 was hit in the engine and the tail and the wounded pilot was forced to land on a nearby open plateau. While the pilot was only wounded, General Ćetković was dead, being directly hit by machine gun fire. Circumstances of this accident are not clear even to this day. The P-51 pilots later claimed that, due to bad weather, they could not see the Partisan markings. By the later account of the Fi 167 pilot, he claimed that the visibility was such that the Partisan markings could have been easily seen.

In JNA service

At least three Fi 167 were put into use by the JNA (Yugoslav People’s Army) after the war. Due to the lack of spare parts, their use was probably limited. They would remain in use up to 1948, but unfortunately they were probably all scrapped, as none survive to this day.

Conclusion

Despite being considered an overall good design, the Fi 167 was never put into mass production. The main reason for this was the cancellation of the Graf Zeppelin aircraft carrier. Nevertheless, the Fi 167 did see some limited service within the Luftwaffe, mainly for testing, but also with the Croatia NDH, where its performance was deemed sufficient.

Operators

  • Nazi Germany – Used the small number of Fi 167, mostly for various experimental purposes.
  • Romania – Allegedly supplied with Fi 167 in 1943, but this is not confirmed.
  • Independent State of Croatia NDH – Operated 10 to 11 aircraft between September 1944 and April 1945.
  • SFR Yugoslavia – Operated a small number of Fi 167 during the war and up to 1949.
Specification: Fi 167
Wingspan 44 ft 3 in / 13.5 m
Length 37 ft 5 in / 11.4 m
Height 15 ft 9 in / 4.8 m
Wing Area 490 ft² / 45.5 m²
Engine One 1100 hp (820 kW) Daimler-Benz DB 601B
Fuel load 1,300 l
Empty Weight 6170 lb / 2,800 kg
Maximum Takeoff Weight 10,690 lb / 4,860 kg
Maximum Speed 200 mph / 325 km/h
Cruising Speed 168 mph / 270 km/h
Range 800 mi / 1,300 km
Maximum Service Ceiling 26,900 ft / 8,200 m
Crew One pilot and one observer/rear gunner
Armament
  • One 7.92 mm MG 17 forward-firing machine gun
  • One 7.92 mm MG 15 rear mounted machine gun
  • Bomb load of 1.000 kg (2.200 lbs)or 750 kg (1650 lbs) torpedo

Gallery

Illustrations by Ed Jackson

Fi 167A-0 in service with Erprobungsstaffel 167 in the Netherlands 1940 – Equipped with a centerline rack and torpedo
Fi 167A-0 (W.Nr.08) in service with Erprobungsstaffel 167 in the Netherlands 1940 – Seen here sporting a different camo pattern
Fi 167 No. 4806 in Croatian Service
Fi 167 in Partisan Yugoslav service circa 1944
Artist Concept of the Fi 167 in Romanian Service in 1943

While the Fi 167 proved to have excellent handling characteristics, due to the cancelation of the German aircraft carrier project, it was not accepted for service. [Vaz]
Another view of a flying Fi 167. [Valka.cz]
Sources

 

Focke Wulf Fw 190 mit DB 609

Nazi flag Nazi Germany (1942)
Fighter Concept – None Built

An alternate side view of the Fw 190 mit DB 609 model. [Falko Bormann]
The Focke-Wulf Fw 190 mit DB 609 was a 1942 design venture to provide the Luftwaffe with a successor to the Fw 190 and its troublesome BMW 801 radial engine. Intended, to mount the envisioned experimental 16-cylinder Daimler-Benz DB 609 engine to produce around 2,600 hp (later 3,400 hp), the new power plant would have required a drastic redesign to the forward section of the Fw 190 as well as parts of the fuselage. In the end, the Fw 190 mit DB 609 was canceled due to flaws with the design and Daimler-Benz’s cancellation of the DB 609 project. Similar to many of the other designs produced in 1942, the Fw 190 mit DB 609 remained a paper design only, although an airframe was provided for the intent of mounting and testing the engine. Obscure in nature and short-lived, much of the project’s specifications and estimated performance are unknown.

History

The original blueprint illustration of the Fw 190 mit DB 609. [War Thunder Forums]
The Focke-Wulf Fw 190 Würger (Shrike) was one of Nazi Germany’s most iconic fighters of the Second World War. First introduced in August of 1941, the Fw 190 gave contemporary Allied fighters a run for their money and proved to be a relatively successful design. However, the air-cooled 14-cylinder BMW 801 radial engine which powered the Fw 190 proved to be troublesome at times. The BMW 801’s cooling system was inadequate, which caused overheating and production of fumes, which would leak into the cockpit and could suffocate the pilot. Despite the relatively successful introduction of the Fw 190, it was not known if the Reichsluftfahrtministerium (RLM / Ministry of Aviation) would make further orders for the aircraft. However, the spring of 1942 was a prosperous time for the Focke-Wulf firm and assured the Fw 190’s future. The RLM put in orders for large quantities of Fw 190, which in turn boosted the firm’s budget. As such, designers at the Bremen-based Focke-Wulf firm initiated a design venture to produce a successor for the Fw 190 by replacing the troublesome BMW 801 engine with more advanced engines being developed by BMW and Daimler-Benz.

As such, the Focke-Wulf firm produced several drawings in late 1942 which saw the Fw 190 mounting experimental engines. The designs are as follows:

Drawing Number Project Title
10 10 05-201 Fw 190 mit BMW P. 8028
10 10 05-202 Fw 190 mit BMW 801 J
10 10 05-203 Fw 190 mit DB 609
10 13 141-02 Fw 190 mit DB 623 A
10 13 141-16 Fw 190 mit DB 614
11 19 05-502 Fw 190 mit BMW P. 8011
Unknown Fw 190 mit DB 603
Unknown Fw 190 Strahljäger

In order to provide a suitable testbed for these engines, Fw 190 V19 (Werknummer 0042, rebuilt from a Fw 190 A-1) was allocated for engine installation tests. Curiously enough, Fw 190 V19 would be later be redesigned for the “Falcon” wing design which saw a drastic redesign of the wing to a swept, bent design. Conversion to this wing type was meant to take place on February 16, 1944 but this would never occur. Nonetheless, Fw 190 V19 would maintain the regular wings for engine testing.

A closeup of the Fw 190 mit DB 609 model’s cockpit and fuselage section, highlighting the supercharger radiator’s placement. [Falko Bormann]
Although the Fw 190 mit DB 609 showed potential, there were several problems which plagued the design. For one, the rather heavy and bulky engine severely affected the aircraft’s center of gravity. As such, the engine’s radiators had to be moved down the fuselage behind the cockpit. The engine also would have put too much stress on the landing gears which could potentially result in a fatal crash if landing conditions were rough. On top of the airframe design issues, the intricate design of the engine also proved a problem for the Daimler-Benz designers, who would terminate the DB 609 (and its subprojects) in April 1943. As such, the Fw 190 mit 609 project would be dropped as well without the experimental engine ever being mounted on V19. Many of the other designs produced by Focke-Wulf in 1942 would also meet the same fate, for more or less similar reasons.

Due to the short-lived conceptual nature of the design, detailed specifications and estimated performance do not appear to have survived. As such, much of the aircraft’s intricate details and specifications are unknown. One could only hope that, in the near future, more details of the Fw 190 mit DB 609 and it’s contemporary designs will surface.

Design

A model of the Fw 190 mit DB 609 in a hypothetical livery with a drop tank. [Falko Bormann]
The Focke-Wulf Fw 190 mit DB 609 was a 1942 project to produce a successor to the Fw 190 by replacing the troublesome BMW 801 engine with more promising experimental engines being developed at the time. As the name of the project suggests, this design would have seen the implementation of a Daimler-Benz DB 609 V16 engine. The Daimler-Benz DB 609 was a development of the company’s DB 603 engine. Unlike its predecessor, the DB 609 would have 16 cylinders in contrast to the former’s 12 cylinders. The DB 609’s output was estimated by Daimler-Benz designers to be approximately 2,600 to 2,660 hp, though it would later be upped to 3,400 hp. The benefits of this engine were the ability to function normally upright and inverted, but the bulky engine design required a drastic redesign of the engine cowl and parts of the fuselage. The cowl would have been extended to accommodate the DB 609 engine, the length of which would have measured at 115 in / 2,935 mm compared to the BMW 801’s 79 in / 2,006 mm length.

According to the official blueprints for the Fw 190 mit DB 609, the two large radiators intakes required for the engine’s supercharger were moved to the cockpit’s rear, on the side of the fuselage. This was done to pull the center of gravity back, as placing them in the front would make the aircraft too nose heavy. The placement of the supercharger radiators is similar to that of the American Republic P-47 Thunderbolt. It would appear that internet sources claim the radiator placement was nicknamed the Hamsterbacken (Hamster Cheeks), but it is unknown whether or not this was an official nickname.

Fw 190 V19 (Werknummer 0042), which was intended to mount and test the DB 609 engine, was rebuilt from a Fw 190 A-1, but it is unknown which variant precisely the hypothetical production variant would be based upon. Armament wise, the official project blueprints show two 7.92x57mm Mauser MG 17 machine guns mounted on top the engine cowl. What appears to be a 20x82mm Mauser MG 151/20 cannon would be installed in the engine hub and would fire out through the propellers. It is unknown what wing armament (if any) the Fw 190 mit DB 609 would have had.

Due to the rather short-lived and conceptual nature of the Fw 190 mit DB 609, not many of the plane’s specifications are unknown. Performance estimations do not appear to be available, nor are aircraft dimensions.

Operators

  • Nazi Germany – The Focke-Wulf Fw 190 mit DB 609 was intended to be a successor to the Fw 190. However, development was dropped due to various problems with the design and engine.

Gallery

Artist Concept of the Fw 109 with the DB 609 Engine [Ed Jackson]
A retouched blueprint of the Fw 190 mit DB 609. [Heinz J. Nowarra]
Credits

Arado Ar 233

Nazi flag Nazi Germany (1942)
Amphibious Multipurpose Transport – 1 Incomplete Mockup Built

The 1:10 model of the Ar 233. [Dan Sharp]
The Arado Ar 233 was an amphibious passenger transport seaplane designed in 1942, a time when it seemed Germany would soon complete its conquest of Europe and conclude the Second World War. Intended for civilian use after the war, the development of the Ar 233 was cancelled due to the deteriorating war situation for Germany in 1944. As the project was deemed low priority, much of the Ar 233’s advanced design work was done in the German Military Administration in France by the Société Industrielle Pour l’Aéronautique (SIPA) aircraft firm located within the Northern German administrative zone. The Ar 233 never materialized, but an incomplete mockup was constructed along with a 1:10 scale model. The incomplete mockup, along with blueprints and notes, were captured by the Free French Forces shortly after the Liberation of France. However, the Ar 233 was not further developed by the French, unlike quite a few of the German aircraft projects undertaken and captured in France. Relatively unknown and often overlooked, the Ar 233 is an interesting obscure project to provide an alternate-history post-war Germany with a suitable transport plane.

History

A cutaway drawing of the Ar 233 in its passenger configuration. [Dan Sharp]
The first couple years of the Second World War appeared to have been going firmly in favor of Germany. Most of Western Europe had been conquered by then, and the Wehrmacht was making steady progress in its advance eastwards to conquer the Soviet Union. Despite recently declaring war on the United States, a distant economic powerhouse, Germany still seemed confident in its path to triumph. This feeling was prominent amongst the Germans throughout the initial years of the war. As such, some aircraft firms began to make preparations for post-war German civil aviation early in 1940, in accordance with a request made by the Reichsluftfahrtministerium (RLM / Ministry of Aviation). A few examples of aircraft designed for future German civil use are the Focke-Wulf Fw 206 and Blohm & Voss BV 144. The Arado firm was not exempt from partaking in civil aircraft design and responded with a two engine float plane design.

Designed as a passenger transport, the project began around August within the Arado firm bearing the designation “E 430”. Two variants were originally envisioned, a Bramo 323 R2 powered seaplane model capable of transporting ten passengers and a smaller Argus Ar 204 powered amphibian floatplane (capable of operating from land and water) able to transport eight passengers. According to the RLM, the project officially began in October 1942, but this was likely when it was submitted or approved to the RLM. Work on the project most certainly began in August due to the amount of preliminary steps required. This is further backed up by interviews with former French aircraft designers. As the German mainland’s industry was mostly reserved for military production, the industry of occupied France (German Military Administration in France) seemed like an acceptable place to offload this low priority project. As such, the Arado firm made arrangements for the German-controlled French Société Industrielle Pour l’Aéronautique (SIPA) aircraft firm to assist in the design and production of the E 430. The SIPA firm was founded by Émile Dewoitine in 1938 after his previous firm Constructions Aéronautiques Émile Dewoitine was nationalized. It would appear that, between October and December of 1942, the E 430 project gained the designation Ar 233.

In addition to the update in nomenclature, the smaller As 204 powered E 430 “Amphibium” was cancelled in favor of the ten passenger seaplane. However, the amphibious characteristic of the former was integrated into the Ar 233. Soon after, the French SIPA firm began work on producing a full-scale mockup. The SIPA factory in Île de la Jatte, Neuilly-Sur-Seine, West of Paris, was responsible for the the mockup while the other office at 27/29 Rue Dupont (also in Neuilly-Sur-Seine) and the Dewoitine Design office in 11 Rue de Pillet-Will in Paris were responsible for other work. By Christmas Eve of 1942, it would appear that a large portion of the mockup was completed as the Arado firm released a brochure advertising the Ar 233 which featured images of the mockup. The brochure made mention of four projected Ar 233 variants which included the original passenger airliner, a flying ambulance, a private luxury touring aircraft, and a cargo transport. The French effort in the design work and mockup construction went unrecognized, as all French involvement in the project were omitted from the brochure. However, close examination of a few photos in the brochure shows some of the equipment labelled in German and French.

A wind tunnel model of the Ar 233. The bulge beneath the wing is a extendable float. [Dan Sharp]
Further on, it would appear that a 1:10 scale model of the Ar 233 was constructed along with a set of propellers. They were tested separately until May 1943 apparently, when they were paired together and sent to the Nationaal Luchtvaart Laboratorium (NLL / National Aviation Laboratory) facility in Amsterdam, Occupied Netherlands. Other than this model, not much more work appeared to have been done on the Ar 233. This was likely due to the disaster at Stalingrad, when the German 6th Army suffered a catastrophic defeat, and Germany’s ensuing effort to focus on their military industry. Nonetheless, the project remained stagnant for the remainder of 1943 and was finally cancelled in 1944 in favor of military aircraft. When the Allied forces and Free French Forces liberated France, it seems that the mockup and quite a lot of notes and design prints were captured. It does not appear that the French furthered the Ar 233 project after the war unlike quite a lot of the other German projects conducted in France, such as the Heinkel He 274 bomber or Blohm & Voss BV 144 airliner.

A rear view of the Ar 233 mockup which shows the port side entrance hatch. [Dan Sharp]
In the end, the ill-fated Ar 233 did not progress beyond the mockup and wind tunnel testing stage, although the project was meant to be a capable amphibious seaplane which could operate in all weathers including the extremes in the North Pole and the Tropical regions. The aircraft also had the luxury of being operable from both land and sea. This also would allow the aircraft to operate in underdeveloped regions which did not have adequate airfields. It also would have made emergency landings safer as calm water surfaces would allow for less dangerous landings compared to rough land terrain.

Design

The incomplete Ar 233 mockup in the workshop of the French firm SIPA, near the outskirts of Paris. [Dan Sharp]
The Ar 233 was an amphibious seaplane intended to be powered by two 9-cylinder air-cooled Bramo 323 MA radial engines producing 968 hp each. Each engine would be driven by a three blade propeller which would be started electrically via an onboard generator. The generator would also power the onboard radio systems (FuG X P, FuG 101 and FuBl II F) and a fan to provide ventilation. The Ar 233’s crew consisted of a pilot and a radio operator, though a co-pilot could join the crew. The Ar 233 had four variants which would have the passenger capacity vary. For ease of transport, the Ar 233 was designed so that it could be taken apart and transported via the railroad system.

A rear view of the Ar 233 mockup’s cockpit which shows the pilot and copilot’s seat. Note the hatch in the middle which gives access to the forward passenger luggage compartment. [Dan Sharp]
The pilot’s compartment consisted of three seats for a pilot, a co-pilot or passenger and a radio operator. An extra set of controls could be installed for a co-pilot in longer range flights or to train pilots. The cockpit could be accessed via a ladder that folded to the underside of the wing. The side windows in the cockpit could be opened by sliding them forward, while the forward windows could be dropped forward to the bow section. An emergency manual pump was located next to the co-pilot’s seat that could be used to remove water. Visibility from the cockpit appears to be inadequate due to the lack of downwards visibility. Rear visibility also seems to be lacking.

The fuselage of the Ar 233 was a ship-hull shaped in order to allow floating on water surfaces. The fuselage was divided into several sections which, in order from front to end, were the nose wheel compartment, forward baggage compartment, pilot’s cockpit, landing gear hatch, passenger compartment, rear baggage compartment and a washroom fitted with a toilet. Lighting in the passenger compartment was provided by ceiling lights which were powered by a generator. Two air ventilation fans were also provided, with one above the entrance and the other in the land gear shaft. The left side of the fuselage had a door which allowed passengers to enter. The entrance door opened both upwards and downwards, with the latter being able to act as a platform. An emergency exit was provided on both sides, as the middle window in the fuselage could open. The tail of the Ar 233 was designed so that it curved upwards in order to protect the control surfaces by preventing unnecessary contact with the water.

A three-view drawing of the Ar 233 along with it’s basic dimensions. [Dan Sharp]
In the passenger airliner configuration, the aircraft could carry eight passengers and two crew members. The seats provided in the passenger compartment were fitted with armrests, side tables, seatbelts, lamps and small luggage nets. The luxury touring configuration only allowed four seats (including the pilot). It would also have had two extra 400 L fuel tanks near the wing edge to extend the range. The cargo transport configuration would carry no passengers and had all seats in the passenger compartment removed for cargo. Any cargo would be loaded through hatches on the fuselage side and would have equipment to secure cargo in flight. In the ambulance configuration, beds could be fitted in the passenger compartment for the wounded.

There would be two wheeled landing gears which would be extendable from the side of the hull for land-based operations. Each one of these wheel measured at 39.96 x 14.96 in / 1,015 x 380 mm. These landing gears, when retracted, remained above the waterline and were hydraulically operated. The nose wheel (width measured at 33.74 x 12.79 in / 875 x 325 mm) sat at the front of the aircraft and could retract into a watertight compartment that could expel excess water with compressed air. If needed, a crewmember could climb above the nose compartment and lift the lid on top to perform maintenance. It was also provided with a locking mechanism. Additionally, the nose wheel’s suspension strength allowed it to perform takeoff and landings at altitudes up to 4,900 ft / 1,500 m.

The Ar 233 was designed so that it could be transported via rail. This blueprint drawing shows the transport configuration. [Dan Sharp]
The “V” shaped gull wings that sat on top of the fuselage provided a suitable platform for the engines and propellers, as it allowed them to be mounted at a safe distance from the water. Just behind the engine cowls were a set of hydraulically extended floats for assistance with landing on water. The fuel tanks for the engines were located in the wing leading edge in three “densely riveted” containers. These fuel tanks would be refilled by climbing on top of the cockpit via an access ladder. In addition, hydraulically operated flaps were provided to aid the Ar 233 in landing. These flaps were designed to yield in rough water conditions to reduce damage.

In terms of excess equipment, the Ar 233 could carry a fog horn, rubber dinghy, boat hook, towing gear, ropes, detachable sun canopy, emergency food and water, emergency tools, both ground and sea anchors and various other materials.

Variants

  • E 430 (Bramo 323 R2) – Original design concept which saw a dedicated seaplane powered by two Bramo 323 R2 radial engines and capable of transporting ten people. This design was further developed by incorporating the amphibious characteristic of the E 430 “Amphibium”. This design was later improved upon and bore the designation Ar 233.
  • E 430 Amphibium (Argus Ar 402) – Original design concept developed beside the E 430 which saw a scaled down variant powered by Argus Ar 402 engines and capable of carrying eight passengers. This variant could be operated from land and water due to it’s amphibious characteristics. This variant was cancelled but its amphibious design was carried onto the E 430.
  • Ar 233 (Commercial Airliner) – Commercial airliner design based on the original E 430 design which would be capable of carrying ten people. A pilot and radio operator were part of the crew which allowed for eight passengers. In addition, a co-pilot could be in the crew at the expense of a passenger. Two baggage compartments (located in the hull in front of the cockpit but behind the nose wheel and behind the passenger compartment) and a toilet compartment (located behind the rear baggage compartment) were provided for the passengers. Powered by two 9-cylinder air-cooled Bramo 323 MA radial engines.
  • Ar 233 (Luxury Touring Aircraft) – Luxury touring variant intended for sightseeing in remote areas. This variant featured four seats (including the pilot). This variant had the choice of carrying two extra fuel tanks at 400 L each in the outer wings. The envisioned range was 1,120 mi / 1,800 km. This variant also had the choice of implementing an additional set of controls for a co-pilot. It is not known if this variant would retain the two baggage compartments and toilet. Powered by two 9-cylinder air-cooled Bramo 323 MA radial engines.
  • Ar 233 (Cargo Transport) – Cargo transport variant which saw the removal of the passenger compartment equipment for cargo. The aircraft in this configuration appeared to been capable of carrying up to 2,200 lb / 1,000 kg of cargo. The cargo would be loaded from doors on the side of the fuselage with equipment provided to secure the cargo. The two baggage compartments and toilet were definitely removed for space. Powered by two 9-cylinder air-cooled Bramo 323 MA radial engines.
  • Ar 233 (Flying Ambulance) – Flying ambulance variant which envisioned the possibility of placing four beds in the passenger compartment either for the wounded or for the passengers. This variant was mentioned as the E 430 Flying Ambulance in the Ar 233 brochure, which shows the variant still maintained the original designation. It is not known if this variant would retain the two baggage compartments and toilet. Powered by two 9-cylinder air-cooled Bramo 323 MA radial engines.

Operators

  • Nazi Germany – The German Arado design firm was the original designer and intended to develop the Ar 233 for use with Lufthansa, the Luftwaffe and other organizations. The project was cancelled in 1944 after Allied forces liberated France.
  • German Military Administration in France – The SIPA firm under German control was responsible for partially designing and building the Ar 233. All three of SIPA’s facilities appeared to have been working on the project.
  • Free France – The Free French Forces captured the intact Ar 233 mockup as well as notes and drawings after the Liberation of France, but they did not continue development of the project and presumably scrapped the mockup.

Arado Ar 233 (Commercial Airliner)

Wingspan 77 ft 9.07 in / 23.70 m
Length 68 ft 5.65 in / 20.87 m
Height 21 ft 5.87 in / 6.55 m
Wing Area 807.29 ft² / 75.00 m²
Engine 2x 9-cylinder air-cooled Bramo 323 MA radial engine (986 hp / 735 kW)
Propeller 2x electrically started three-blade propeller
Propeller Diameter 11 ft 5.79 in / 3.50 m
Wheel Width 34.45 x 12.79 in / 875 x 325 mm – Nose Wheel

39.96 x 14.96 in / 1,015 x 380 mm – Fuselage Wheels

Maximum Weight 20,000 lb / 9,000 kg
Range 750 mi / 1,200 km
Radio Systems 1x FuG 101

1x FuBl II F

1x FuG X P

Crew 1x Pilot

1x Co-Pilot – Optional

1x Radio-Operator

Passenger Load 7x Passengers – With Co-Pilot

8x Passengers – Regular

Gallery

Illustrations by Ed Jackson – artbyedo.com

Arado Ar 233 – Artist Conception of the Military Version
Arado Ar 233 – Artist Conception of the Passenger Version

A blueprint sketch showing how the main landing gear operated. [Dan Sharp]
The radio operator’s position which is located behind the cockpit. All the equipment mockups are labeled in French and German. [Dan Sharp]
A blueprint sketch showing extension of the forward nose. [Dan Sharp]
A blueprint sketch showing the fuel tank arrangement of the Ar 233. [Dan Sharp]
Inside view of the incomplete tail section of the mockup. [Dan Sharp]
The nose section of the Ar 233 mockup. A tow ring is visible at the tip of the aircraft while two labels above it shows where the landing lights would be positioned. [Dan Sharp]
A closeup of the cockpit is shown. The seats are removed and the forward baggage compartment can be seen. [Dan Sharp]
A partial view of the Ar 233 mockup’s passenger compartment which shows two very comfortable looking seats. [Dan Sharp]
A blueprint sketch shows the wing floats extended. [Dan Sharp]
Credits

Heinkel He 219 Uhu

Nazi flag Nazi Germany (1941)
Night Fighter – 268~294 Built

Surprisingly, the He 219 started its life as a reconnaissance aircraft. However, it was not deemed acceptable for this role and was heavily redesigned as a night-fighter aircraft. While proving to be one of the best German night-fighter designs of the war, only fewer than 300 would be built and its impact on the course of World War II was negligible.

An Unsuccessful Reconnaissance Role

During the early years of the war, the Luftwaffe (German Air Force) was in great need of an advanced and dedicated reconnaissance aircraft. Seeing an opportunity, Heinkel officials presented a design proposal to the RLM (ReichsluftfahrtMinisterium) at the end of April of 1940. This proposal consisted of blueprints of a new single-engine reconnaissance plane (named P.1055), based on the earlier He 119, which was estimated to be capable of a max speed of 466 mph (750 km/h). The RLM and Heinkel officials met in early October 1940 to discuss the viability of such a project. The RLM officials initially showed interest in the project, especially the bomber variant. But, as the demand for high-speed was great, the slower bomber and later destroyer variants were considered undesirable.

On 23rd November 1940, a fully completed wooden mock-up was presented to RLM officials, who were impressed with it and ordered that the airframe be built by mid-January 1941. This aircraft was to be powered by the new DB 613, which consisted of two side-by-side DB 603 engines. Due to problems with the production of this engine, the DB 610 was to be used instead. By 20th June 1941, two wooden mock-ups with both the DB 613 and DB 610 engine types were presented to the RLM. RLM officials were concerned that the change of engine would fail to meet the required criteria and expected production of the Arado Ar 240 to commence soon. For these reasons, the Heinkel P.1055 project was rejected.

Name

While under initial development, this Heinkel aircraft received the P.1055 designation. As it was largely inspired by the earlier He 119, the new aircraft received the designation He 219 in 1941. By the end of November 1943, Hitler himself made a proposal for a new name for the He 219, the ‘Uhu’ (Owl), by which it is generally known today.

Revival

Side view of the He 219/V3 prototype [Warbird Photographs]
In the hope of somehow reviving the He 219 project, Ernst Heinkel, the owner of the Heinkel company, had a meeting with General Obst. Udet (Head of the Office of Air Armament) in July 1941. After this meeting, Udet visited the Heinkel factory in order to inspect the He 219 wooden mock-up. Udet saw a potential for the usage of the aircraft in a night-fighter role. After his visit, Udet immediately contacted General Josef Kammhuber, who was responsible for commanding night-fighter defense of Germany. At that time, the Luftwaffe was ill-prepared and lacking adequate night-fighter designs to defend against the ever-increasing Allied night bombing raids. General Josef Kammhuber was a big advocate for new types of dedicated night-fighters that would replace the Me-110. After hearing about the He 219 project, Kammhuber immediately dispatched a group of pilots to inspect the new aircraft. While the He 219 was deemed to have potential, some modifications were needed, such as increasing the number of cannons and replacing the large DB 613 coupled engines with two wing-mounted DB 603G, making 1900 hp each.

Work on the modified He 219 began in mid-August 1941. In October, Luftwaffe officials visited Heinkel to inspect the development process and were satisfied with the progress. However, they asked for modifications such as a two-man cockpit, the addition of armor plates to protect vital components, the removal of the machine gun turret, the addition of air brakes, and other changes. At the end of 1941, two He 219 versions were completed. The first was designed as a two-seat night-fighter, equipped with two DB 603G engines and armed with six 20 mm MG 151/20 cannons, with the possibility of adding two more 13 mm MG 131 machine-guns to protect the rear. This model used a somewhat unusual (for German designs) tricycle landing gear that retracted into the engine nacelles. This design made space available for special radio equipment and ejection seats. The second version was designed as a reconnaissance plane with DB 614 engines and armament consisting only of two rear-mounted machine guns for self-defense.

Due to problems with the DB 603G engine’s availability, the weaker DB 603A giving out 1750 hp was to be used instead. The development of the He 219 was nearly stopped in its tracks by a heavy Allied bombing raid on the Heinkel factories located near Rostock in late April 1942. Many vital parts, drawings, and plans were destroyed. Luckily for the Germans, the hangars where the first functional Uhu prototypes were under construction were not hit. In the hopes of avoiding any more raids, the whole He 219 development program was moved to Schwechat Airbase near Vienna, Austria.

As the work and testing on the first He 219 V-1 were underway, in June 1942, the RLM officials informed Heinkel that the production of the plane was estimated to begin in 1943. The first 20 pre-production aircraft were to be built by April 1943, followed by a monthly production of 200 units. As it would later turn out, this was never achieved. By the end of August, Heinkel officials presented an estimated He 219 production report to the RLM. It was stated that, with the existing production capacities, a production of 12 prototypes and 173 units from March 1943 to September 1944 was possible, with maximum potential for 117 additional aircraft. This was far less than the monthly production of 200 aircraft per month originally demanded. The He 219 was to be produced in German-occupied Poland, at Budzun and Mielec, in the hopes of avoiding any future Allied bombing raids.

The First Prototype

The He 219 cockpit. [Warbird Photographs]
By September 1942, the first He 219 V1 airframe was almost completed. There were delays with the delivery of the landing gear. At this stage, the He 219 had a twin tailfin design. Fearing that it was a weak point, Ernst asked for a second prototype to use a standard single tailfin. Future tests and calculations showed that the twin tailfin design did not pose any risk, so this feature was kept in the later production models.

The He 219 made its first test flight, piloted by the Gotthold Peter, on the 6th of November 1942 (or 15th depending on the source). The V1 prototype received the serial number W.Nr. 219 001 and, on the fuselage, VG+LW was painted. After the flight, which lasted 10 minutes, the pilot noted that the plane’s controls were good, but there were some issues such as inadequate radio equipment and problems with inoperable instruments, among others. On November 9th, there was an accident during a landing due to heavy rain and poor visibility. The pilot misjudged the distance to the airfield and broke the front landing gear as he hit the ground. The damage was repaired in the next few days and, through November, many more test flights were carried out. The testing would continue up to April 1943, during which time some 46 flights with the He 219 V1 were made. During this time, several pilots flew the Uhu, including Oberstleutnant Petersen, Bottcher Beauvais, Major Streib, and others.

Front view of the He 219 V5 prototype. The He 219 was fitted with an unusual tricycle landing gear. [Warbird Photographs]
On 10th January, the He 219 V2 prototype made its first test flight. In the following days, it was tested by the well known night-fighter pilot, Major Werner Streib. After testing the He 219, Major Werner Streib was more than pleased with its performance and wrote a report to Hermann Goering in which he urged for increased production of the Uhu. Further test results were not so promising, as there were several issues noted with the He 219, such as a lower top speed than originally claimed by the Heinkel, problems with strong landing gear vibrations and insufficient stability. For these reasons, the He 219 V1 prototype was sent back to Heinkel for more modifications. The fuselage construction was strengthened but also lengthened by nearly a meter. Other modifications were also made, such as modifying the engine nacelles, adding new propellers, installing a new twin rudder and adding an armament of four 30 mm MK 108 cannons.

Problems in Development and Production

The He 219/V3 prototype in flight seen from below. [Warbirds Resource Group]
In mid-February 1943, a decision was made to modify the V2 in the same manner as the V1 prototype. In addition, the construction of more prototypes was approved. Initially, 10 more prototypes were to be built and tested with different equipment and armament, such as remote-controlled guns and autopilot. The He 219 development was hindered by the lack of availability of DB 603A engines. V7 and V8, which were to be field-tested in May 1943, were equipped with these engines only after General Josef Kammhuber’s personal intervention. Other problems, like the lack of resources, adequate production facilities, and workforce, also affected the He 219’s development. The greatest threat to the He 219 project was probably Generalfeldmarschall Erhard Milch. He was of the opinion that quantity should be prioritized over quality. He urged increased production of the Ju 188, as he claimed it was much cheaper and faster to produce. To counter this, General Josef Kammhuber, the He 219’s main proponent, insisted that it should be flight tested against Ju 188. In late March 1943, a competition was held in Rechlin between several night-fighter aircraft: a Do 217, Ju 188 E-1 and the He 219 V1. Due to its much heavier weight, the Do 217 did not stand a chance. After the test flight, the results showed that the He 219 was faster by 25 to 40 km/h, had better handling characteristics and that its price was actually lower than that of the Ju 188. Despite these results, Generalfeldmarschall Erhard Milch was persistent in his attempts to stop the He 219 project, but its development continued. On 19th April 1943, the V3 prototype was damaged in a landing accident due to pilot error.

Design

Colorized Photo of an He 219 [Warbird Photographs]
The He 219 (A-0 first production aircraft) was designed as a twin-engine, all-metal, mid-wing monoplane. The He 219 fuselage was built using a monocoque design with a rectangular base with round corners. The wings were constructed using two spars, a main and a support. Flaps and ailerons were placed on the wing’s trailing edge.

The cockpit, with an excellent all-around view, was installed at the front of the fuselage. While the fuselage was held in place by using rivets, the cockpit was held in place with bolts. There was accommodation for two crew members, a pilot and a radar operator. The crew members were positioned back to back. While the forward position of the cockpit offered the advantage of good visibility, there was a risk of vulnerability to enemy fire. Another problem was that, in case of emergency, the pilot had first to shut down the engines, as there was a danger of hitting the propellers when exiting the aircraft. For this reason, the He 219 was to be provided with ejection seats for its crew.

The possibility of using ejection seats was being developed and tested by Junkers for some time. The Heinkel company also showed interest in its use. These were to be activated with compressed air or a small explosive charge. During a test flight of the unsuccessful He 280 jet fighter in January 1942, pilot Helmut Schenk was forced to use the ejection seat, which saved his life. After this accident, Heinkel spent time and resources on the production of large numbers of ejection seats, roughly 1,250. These were used on the He 162, Me 262 and He 219.

The engine nacelles were built to house two DB 603A engines. These were twelve-cylinder liquid-cooled 1,750 hp inline engines. They were provided with 3.4 m (11 ft) long three-bladed variable pitch propellers. Behind the engines, two small 20-liter fuel tanks were placed. The main fuel tanks were placed behind the cockpit and were separated with bulkhead ribs. In total, these three main tanks housed around 2,490 liters of fuel (1000, 990, and 500 liters respectively).

The He 219 had a tricycle type retractable landing gear which was somewhat unusual for German designs. The landing gear consisted of four 840 x 300 mm (33 x 11 in) wheels, placed in pairs on two struts, operated hydraulically. The front smaller landing gear consisted of a single 770 x 270 mm (30 x 10 in) wheel. Both the front and rear landing gear struts retracted towards the rear. The front wheel rotated 90° beneath the cockpit floor during retraction.

The basic He 219 A-0 armament consisted of two 20 mm MG 151/20 cannons, with 300 rounds per cannon, placed in the wing roots. If needed, a ventral tray could carry four additional cannons, typically with 100 rounds of ammunition per cannon. There were three different forward-mounted weapon configurations, using two MG 151/20 and four 30 mm MK 108, two MG 151/20 and four 30 mm MK 103, or just four MK 103. For acquiring targets, Revi 16/B reflector guns sights were installed. Later models were equipped with the Schräge Musik weapon system. All guns were fired by the pilot by using a two-pronged control column. The top button was for firing the guns from the ventral pod and the front button was for firing the wing-mounted weapons.

Being used in the role of a night-fighter, it was necessary to equip the He 219 with adequate radar technology. Initially, the radar used was the FuG 212 C1 and C2 in combination with FuG 220 sets. Later during the war, the use of the FuG 212 was abandoned.

First Frontline Service Evaluation with the 1./NJG 1

Color photo of an Uhu lineup at an airfield. Note the missing left rudder. [Warbird Photographs]
On 22nd May 1943, the V7 and V9 prototypes were allocated for evaluation to the I.NJG 1 (Nachtjagdgeschwader 1) unit stationed at Venlo, Netherlands. During one flight, the V9 was tested by firing all its guns, but due to problems with one engine, the pilot had to abort the flight and return to base. While stationed there, both were reequipped with the FuH 212 Lichtenstein BC radar.

During the first combat operational flight on June 11/12th 1943, pilot Major Werner Streib managed to shoot down five RAF aircraft, four Lancasters and one Halifax bomber, over a period of 75 minutes. Only due to lack of ammunition was he forced to return to base. On his return, the canopy cracked in many places due to airframe stress, which lowered the visibility. To complicate the situation further, a number of onboard instruments simply stopped working. During landing, there were additional problems with the landing gear and the pilot landed the aircraft on its belly, heavily damaging the plane. Luckily, both crew members survived without a scratch. V9 had to be written off after this accident. In July 1943, V2 was also lost in a diving flight accident. The pilot did not survive.

Further Development

The He 219 A-7, the picture was taken in 1945. The FuG 220 radar antenna dipoles are clearly visible here. [Warbird Photographs]
Due to the demand for more planes made by General Josef Kammhuber, some 22 pre-production aircraft were to be built. These were designated as He 219 A-0. To add to the confusion, these were also marked as V13 to V34. They were used to test different equipment, engines, and weapon loads.

Note that, due to greatly different information presented by different authors, the following information was taken from M. J.Murawski’s book (2009), “Heinkel He 219 Uhu”.

The A-0 series was to be put into production under four different versions. The R1 would have a longer fuselage and an armament of two MG 151/20 and two MK 108. The R2 was similar to the R1, but with a strengthened undercarriage and armed with four MK 103. The R3 was armed with two MG 151/20 and four MK 108. Finally, the R6 was equipped with the Schräge Musik system and two MK 108 cannons.

The A-0 series was also used to test the installation of auxiliary BMW 003 turbojet engines. One A-0 equipped with this engine managed to achieve a maximum speed of 385 mph (620 km/h) at 19.700 ft (6000 m). This aircraft was almost lost due to an engine fire. Despite the attempt to produce as many He 219 A-0 as possible in the first half of 1944, only 82 were built. By the conclusion of A-0 series production, only around 100 were built. The A-0 was to be replaced by the A-1 version, also planned to be mass-produced. Alas, this was never achieved and the He 219 A-1 was never put into mass-production, with possibly only a few ever built.

The He 219 was provided with a cockpit that offered its crew an excellent all-around view.  [Warbirds Resource Group]
The A-2 version was to be put into mass production as a dedicated night-fighter. It reused the A-1 airframe with modifications to the armor thickness to improve protection, adding flame dampers, and increasing operational range. The first version of the He 219 A-2/R1 was powered by two DB 603 A/B engines and armed with an MG 151/20 and two MK 103 and Schräge Musik. The Schräge Musik was a weapon system developed by the Germans that consisted of two MK 108, with 100 rounds of ammunition each, mounted at an angle of 65°. These were mounted on the He 219 fuselage behind the larger fuel tank. In theory, these angled cannons could engage enemy bombers above the aircraft without fear of return fire. During the use of Schräge Musik in combat operation, there was a possibility that the attacking He 219 would be damaged by the debris of destroyed or damaged enemy bombers. To solve this problem, Mauser developed a new movable gun carriage that could change the elevation of the cannons from 45° to 85°. In practice, however, the ground crews simply removed the Schräge Musik system from the He 219. The He 219A-2/R2 version had increasing fuel capacity by adding extra fuel tanks of 900 liters under the fuselage.

The A-3 was a fast bomber and A-4 was intended to fight the British Mosquito, but both versions were only paper projects.

Problems with the fuel systems on the A-2 lead to the development of the A-5 version powered by the same engines. This A-5/R1 version was armed with two MG 151/20, two MK 103 and two MK 108 in the Schräge Musik system. The A-5/R2 was equipped with the FuG 220 radar and armed with four MG 151/20 and the standard Schräge Musik system. The A-5/R3 version was powered by DB 603 E engines and had the same armament as the A-5/R1. The A-5/R4 had a modified cockpit with three crew members. For this reason, the fuselage was lengthened to 43 ft (16.3 m). The third crew member was added to operate the rear-mounted MG 131 machine gun. The engines used were DB 603 E with increased fuel capacity by the addition of two fuel tanks, each with 395 l, and was armed with four MG 151/20.

The He 219 A-6 was designed to fight the British Mosquito. In order to increase speed, it was stripped of its armor plates and the armament was reduced to four MG 151/20. The sources are not clear if any were actually built.

The final version developed was the He 219 A-7, which was powered by two DB603 G engines. Its first subvariant, the A-7/R1, was heavily armed with two wing root MK 108 and four additional cannons, two MG 151/20 and two MK 103, in the ventral tray. The A-7/R2 was the same as the R1 but with the addition of the Schräge Musik system. The R3 was proposed to be used as a basis for the never-built B-1 version. The R4 had its armament reduced to only four MG 151/20. The R5 was the third and last attempt to modify the He 219 to fight the Mosquito. It was to be powered by the Junkers Jumo 213E engine, equipped with methanol-water injection that boosted the horsepower by 1,320 hp. The last R6 was to be powered by two Jumo 222A engines and armed with two MG 151/20 and four MK 103.

Unrealized Projects

Besides the main production version, two additional variants were to be tested and eventually put into production, but little came of this. The B-1 was designed as a three-seater heavy fighter powered by Jumo 222 engines. In addition, it had a redesigned fuselage and a larger wingspan of 22 m (72 ft). The armament consisted of four MK 108 and two MG 151/20 cannons and one MG 131. The B-2 was a two-seater high-altitude fighter and for this purpose had to be equipped with a pressurized cockpit. Whether any of the B-series were ever built is hard to tell, as the sources are not clear on this matter.

The C-1 was planned to be a four-seat heavy fighter powered with Jumo 222E/F engines. The armament was similar to the B-1 but armed with three more MG 131 machineguns. The C-2 was planned as a fighter-bomber based on the C-1, but with only two cannons and four MG 131. It was meant to be armed with a bomb load of 1,500 kg (3,300 lb).

The He 319 was a proposed fast bomber version powered by DB 603 A engines, but none were ever built. The He 419 was a proposed high-altitude fighter that was to be built using a combination of many different components of previous variants.

In Combat

As already mentioned previously, the He 219’s first combat flight was very successful, with five enemy planes claimed shot down. As this He 219 was lost in an accident, Heinkel sent two additional planes as replacements, V10 and V12. Uhu pilots managed to achieve more kills in the following weeks. In late July 1943, Hauptmann Hans Frank shot down two British bombers , a Lancaster and a Wellington, followed by one more Lancaster in August. On the night of August 30th 1943, these two He 219 managed to shoot down several more British bombers, three Halifaxes, one Stirling, a Wellington, and a Lancaster. One He 219 lost an engine due to enemy fire, but the pilot managed to land back safely. In early September, the two He 219 again attacked a British bomber formation and managed to achieved one kill on a Lancaster. However, on this occasion, one He 219 (V10) was heavily damaged by enemy return fire. In late September, the second He 219 was lost when it collided with a Me 110 in mid-flight. None of the pilots nor their radio operators survived the collision.

In October, the I./NJG 1 unit had seven Uhus, with only two fully operational A-0 under the command of Hauptmann Manfred Meurer. On 19th October 1943, Meurer managed to achieve his first victory while flying the He 219, his 57th overall victory. The next day, one He 219 was lost with its crew due to bad weather. On the night of October 22nd, 1943, Meurer shot down another Allied bomber. Due to quality issues with cockpit equipment and poor heating, all surviving He 219 were to return back to Germany.

As replacements, seven new He 219 (A-0 series) were delivered to I./NJG 1 in December of 1943. On the night of January 21, 1944, Manfred shot down another bomber, but during an engagement with a second bomber, Meurer’s Uhu accidentally collided with the enemy aircraft, killing the crews of both aircraft. He was succeeded by Hauptmann Paul Förster, the oldest pilot in the Luftwaffe, at the age of 42.

During March and April of 1944, several more kills were scored by the He 219. Interestingly, on 12th April, the crew of one He 219 was forced to activate the ejection seats. Both the pilot and the radio operator survived. This is considered the world’s first successful use of ejection seats in combat operations. On the night of April 22nd, Staffelkapitän Modrow managed to shoot down three British Lancasters and possibly two additional Canadian Halifaxes. By the end of April, some 10 Allied bombers had been shot down by the He 219.

The He 219 would continued to bring down many enemy aircraft, but there were some issues . While having excellent handling and firepower, problems arose with the aircraft’s weight. When fully loaded, the He 219 could not fly any higher than 27,900 ft (8,500 m). Another issue was that the speed of 375 mph (605 km/h) could be achieved only without radio antennas. With antennas and flame dampers, the speed was reduced to 347 mph (560 km/h). While it was faster than the Me-110, it was not enough to fight the British Mosquito.

During May of 1944, the He 219 managed to shoot down over a dozen enemy bombers with few losses. In June, Uhu engagements with British Mosquitos began to intensify. On June 2nd, one Mosquito was shot down with the loss of one He 219. From June 6th to 15th, four Mosquitos were shot down without any losses. On the night of June 15th, He 219 pilots managed to shoot down 10 Allied aircraft for the loss of one of their own. By the end of May, I.NGJ 1 had 56 He 219 in total, divided into two groups (Gruppen), and a command unit (Stab). The Stab had 2, I. Gruppe had 33 and the II.Gruppe 21. Of the 56 aircraft, only 43 were fully operational.

On 4th August 1944, a bizarre accident occurred involving one of three He 219 that were to be sent against an Allied daylight bomber raid. During the flight, the pilot of one He 219 noticed that one of the ground crew was somehow caught on the fuselage, hanging in midair. To save this airman’s life, the pilot landed on a nearby airfield. This decision additionally saved the aircrew’s lives, as both remaining He 219 were shot down by the Allied fighter escorts. In August, He 219 pilots managed to achieve only one victory.

Due to extensive air raids on its airbase at Venlo, Netherlands, I./NJG 1 was repositioned to Münster, Germany in early September 1944. On 9th September, two He 219 were lost to American fighters during a training flight. Also during this month, an additional 28 new He 219 were accepted by the Luftwaffe. At the start of October, during a test flight, I./NJG 1 commander Major Paul Föster was killed in an accident. A few more Uhu were lost in accidents or to enemy fire, with only one achieved victory for October.

Some of the last successful missions by the He 219 were at the beginning of November 1944, when 7 Allied bombers were shot down. By the end of 1944, the He 219 managed to shoot down smaller numbers of Allied aircraft, but the losses due to enemy action or accidents began to rise.

In 1945, the He 219 was plagued with a lack of fuel availability, increasing numbers of Allied air raids, and increasing technical problems with the operational aircraft. On 10th January 1945, I./NJG 1 had 64 He 219, with 45 operational aircraft. The last air victory achieved by the He 219 happened on the 7th of March 1945, when pilot Werner Bakke shot down a British Lancaster bomber over the Netherlands. On March 21st, the airbase at Münster was heavily bombed by the Allies. The raid continued the following day. During these attacks, 7 He 219 were completely destroyed, with 13 more damaged. To avoid future raids, the unit was repositioned to the isle of Sylt in Northern Germany. Due to the general lack of fuel, the combat use of the He 219 was limited. On the 9th of April, the number of He 219 within I./NJG 1 was 51, with 44 fully operational. For I./NJG 1, the war finally ended on the 30th April, when the airbase was captured by the advancing British forces.

Only a few units besides I./NJG 1 were ever supplied with the He 219. Some of these were Nachtjagdgruppe 10, a training and experimental testing unit formed in February 1944, Nachtjagd-Ergänzungsgruppe formed in April 1944, ZG 26 ‘Norwegen’ and NJG 5 which had 34 He 219, with 32 operational.

After the War

Side view of the He 219 with British markings added postwar after capture. [Warbird Photographs]
At the end of the war and the German capitulation, the British ground forces managed to capture around 54 He 219. Most were scrapped, but five were sent back to Britain for further examination by the Royal Air Force, and three were given to the Americans. Soviet forces also managed to capture two in Czechoslovakia. These received the designation LB-79 and were mostly used for testing at the Prague Aviation Institute up to 1952, when they were finally scrapped.

Over 50 He 219 were captured by the advancing British forces, but only one would survive the war. [Warbird Photographs]
Surviving He 219

The only surviving He 219 that is currently under restoration. [Key.Aero]
Of the several captured aircraft, only one He 219 (American equipment designation FE 164) still exists and is located at the Steven F. Udvar-Hazy Center at the National Air and Space Museum. It is currently under restoration, with most parts assembled aside from the nose and propellers. In 2012 a wreckage of a He 219 was discovered off the coast of Denmark. It was initially given to the Aalborg Defence and Garrison Museum museum for preservation, but was sold to a museum whose owner remains anonymous.

The He 219 Production

There is no precise information on how many Uhus were actually built. Authors Ferenc A. and P. Dancey give a figure of 294 planes, of which 195 were allocated to the Luftwaffe. D. Nešić states that 288 were built. Authors J. Dressel and M. Griehl mention that, from 1943 to March 1945, 268 He 219 were built in total, with the production of 11 in 1943, 195 in 1944, and the last 62 in 1945. Author A. Lüdeke mentions that 284 were built.

The production orders for the He 219 ranged from 100 to 300 per month, but these were never reached and only small monthly production was ever possible. To avoid Allied bombing campaigns, the production was moved to several locations in Rostock, Germany, Vienna-Schwechat, Austria, and factories at Mielec, Poland.

Despite the resources and time invested in the He 219 project, it was under great pressure from its old opponent, Generalfeldmarschall Erhard Milch. Even as the Uhu was shown to have promising flight performance, Generalfeldmarschall Milch urged it to be canceled in favor of the new Ju 88 G. Ernst Heinkel did what he could to see his project continue, but it would all prove to be futile. In May 1944, Hermann Goering ordered a halt to He 219 production. This order was then revoked, mainly at the insistence Karl Sauer, who was responsible for night-fighter development at this stage of war. While the production of the He 219 would continue on, it would never be built in any large numbers during the war due to political tensions, lack of resources, and workforce shortages.

Variants

  • He 219 V1-V12 – First built prototypes
    • V13-V34 – Used to test various equipment and engines,
  • He 219 A-0 – Pre-production version, around 100 built.
    • R1 – Had larger fuselage and armament of two MG 151/20 and two MK 108
    • R2 – Had strengthened undercarriage
    • R3 – Armed with two MG 151/20 and four MK 108
    • R6 – Equipped with Schräge Musik
  • He 219 A-1 – Proposed for mass production, possibly only a few airframes built.
  • He 219 A-2 – First production night-fighter version,
    • R1 – Armed with two MG 151/20 and two MK 103 and the Schräge Musik system.
    • R2 – Same as R1 but with increased fuel capacity.
  • He 219 A-3 – Proposed fast-bomber version, none built.
  • He 219 A-4 – Proposed improved night-fighter version, none built.
  • He 219 A-5 – Mass production series
    • R1 – Was armed with two MG 151/20, two MK 103 and two MK 108 in the Schräge Musik system.
    • R2 – Armed with four MG 151/20 and FuG 220 radio equipment.
    • R3 – Powered by DB 603E engines.
    • R4 – Powered by DB 603E engines, with one more crew member added that operate the rear-mounted machine gun.
  • He 219 A-6 – Anti-Mosquito version, unknown if any were built.
  • He 219 A-7 – Final production version powered by the DB603 G engine and equipped with different weapon loads.
    • R-1 – Armed with two wing root MK 108 and four additional cannons (two MG 151/20 and two MK 103) in the ventral tray.
    • R-2 – Same as previous version with added Schräge Musik system.
    • R-3 – The MK 108 cannons in the wing root were replaced with MG 151/20.
    • R-4 – Armament reduced to only four MG 151/20.
    • R-5 – Powered by Junkers Jumo 213E engine.
    • R-6 – Powered by Jumo 222A engines, and armed with two MG 151/20 and four MK 103.

Proposed Versions

  • He 219 B
    • B-1 Proposed three-seater heavy fighter, possibly few built.
    • B-2 – Proposed high-altitude fighter.
  • He 219 C
    • C-1 – Proposed four-seat heavy fighter.
    • C-2 – Proposed fighter bomber.
  • He 319 – Proposed fast bomber version, none built,
  • He 419 – Proposed high-altitude fighter

Operators

  • Nazi Germany – Produced less than 300 aircraft, but only 195 were ever issued to the Luftwaffe.
  • USA –Used three aircraft for testing after the war, one survived to this day.
  • UK – Five aircraft were transported to the UK for testing after the war.
  • Soviet Union – Captured at least two He 219, these were given to Czechoslovakia and used for testing.

Conclusion

The He 219 A-0 laying derelict at Munster, Germany in May 1945 [Warbirds Photographs]
The He 219 proved to be one of the best German night-fighter designs of the war. Despite the small number of aircraft built, the pilots flying the He 219 managed to shoot down many Allied aircraft. While the He 219 is generally known today as a night-fighter that, if produced in greater numbers, could have stopped the Allied bombing raids, in truth this was not possible. During service, the He 219 proved to have some issues, of which the most serious was the inability to climb when fully loaded to an altitude higher than 27,900 ft (8,500 m) and a combat speed of 347 mph (560 km/h). In addition, it was built too late and in too small numbers  to seriously threaten Allied bomber formations.

Specifications –  Heinkel He 219A-7/R2
Wingspan 60 ft 8.3 in / 18.50 m
Length 50 ft 11 in / 15.5 m
Height 13 ft 5 in / 4.10 m
Wing Area 480 ft² / 44.50 m²
Engine Two 1,900 hp Daimler-Benz DB 603G engines
Empty Weight 24,690 lb / 11.200 kg
Maximum Takeoff Weight 33,730 lb / 15,300 kg
Fuel Capacity 687 gallons / 2,600 liters
Maximum Speed 416 mph / 670 km/h
Cruising Speed 391 mph / 630 km/h
Range 1,240 mi / 2,000 km
Maximum Service Ceiling 40,025 ft / 12,200 m
Crew One pilot and one navigator
Armament
  • Two 30 mm MK 103 and a twin 20 mm MG 151/20 Ventral Gun Pod
  • Two 30 mm MK 108 in the wing roots
  • Two 30 mm MK 108 in the Schräge Musik configuration

Gallery

Illustrations by Ed Jackson

Heinkel He 219A-2 Uhu, D5+BL, NJG 3, Captured at Gove, Denmark, May 1945
Heinkel He 219A-7 Uhu, D5+CL, NJG 3, Captured at Gove, Denmark, May 1945
Artist Interpretation of the He 219B Uhu with Jumo 222 Engine and extended wingspan. Note the large ducted spinner and numerous exhaust pipes to accommodate the engine’s 24 cylinders.

The He 219 cockpit. [Warbird Photographs]
The He 219/V3 prototype in flight, seen from below. [Warbirds Resource Group]
The He 219 A-0 lying derelict at Munster, Germany, in May 1945 [Warbirds Photographs]
Color photo taken of an Uhu lineup at an airfield. Note the missing left rudder. [Warbird Photographs]
Side view of the He 219/V3 prototype [Warbird Photographs]
Side view of the He 219 with British markings added postwar, after capture. [Warbird Photographs]
Over 50 He 219 were captured by the advancing British forces, but only one would survive the war. [Warbird Photographs]
A He 219 A-7 in a picture was taken in 1945. The FuG 220 radar antennas are clearly visible here. [Warbird Photographs]
Colorized Photo of an He 219 [Warbird Photographs]
The He 219 was provided with a cockpit which offered its crew an excellent all-around view. On the other hand, it left the crew exposed to enemy fire. [Warbirds Resource Group]
Front view of the He 219 V5 prototype. The He 219 was fitted with an unusual tricycle landing gear. [Warbird Photographs]
Uhu with its radar dipole antennas removed for maintenance or testing [Warbirds Photographs]
The only surviving He 219, that is currently under restoration. [Key.Aero]
Credits

Focke Wulf Fw 190 Strahljäger (Jet Fighter)

Nazi flag Nazi Germany (1942)
Jet Fighter Concept – None Built

An official blueprint showing the Fw 190 Strahljäger’s design and estimated performance. (Die Deutsche Luftrüstung 1933-1945: Vol. 2)

The Fw 190 Strahljäger (Jet Fighter) was a conceptual turbojet fighter and the Focke-Wulf Flugzeugbau firm’s first attempt to design a jet-powered fighter. First mentioned in a report dated November 5, 1942, the Fw 190 Strahljager would have seen the BMW 801 radial engine replaced by a Focke-Wulf T.1 turbojet engine capable of producing 1,300 lb / 600 kg of thrust at most. Short-lived and canceled mere months after its conceptualization, the Fw 190 Strahljäger is quite mysterious in many aspects, such as how the engine would have performed while mounted. Unfortunately, due to the unique nature of the design, the Fw 190 Strahljäger has been the victim of falsification and malicious misinformation. One of the most popular claims on this aircraft was that it was built. This is almost assuredly false, as no primary sources support this claim. A photo does exist which purports to show a Fw 190 with the jet engine, but this photo is definitely a fake as there are too many discrepancies and questionable content, such as the plastic model looking landing gear. Nonetheless, the Fw 190 Strahljäger is quite an interesting design from 1942 that shows Focke-Wulf’s attempts to remedy the powerplant issues of their Fw 190.

History

When first fielded in August of 1941, the Focke-Wulf Fw 190 Würger (Shrike) made a positive impression with Luftwaffe pilots. Seemingly equal or superior to most contemporary Allied fighters, the Fw 190 gained a fearsome reputation among the Allied pilots, who at first did not even realize the Fw 190 was a new aircraft model. Despite the success of the Fw 190, there were several problems with the aircraft’s design. For one, the air-cooled 14-cylinder BMW 801 radial engine which powered the aircraft was prone to overheating due to inadequate cooling systems and, as a result, would produce fumes which would seep into the cockpit and suffocate the pilot. This issue was somewhat addressed in subsequent production variants, but the problem was never snuffed out. In an attempt to address this issue, the Bremen-based Focke-Wulf firm began to look into the possibility of changing the powerplant. However, it was not until late 1942 that the firm launched several design ventures for a new design. In the spring of 1942, the Focke-Wulf firm received a considerable amount of funds from production orders for the Fw 190 by the Reichsluftfahrtministerium (RLM / Ministry of Aviation). The goal of the design venture was to provide a successor to the Fw 190 by replacing the BMW 801 with more promising engines being developed at the time.

A colored official blueprint showing the Fw 190 Strahljäger’s design and estimated performance. Note the large “Ungültig” on the document, which means “Invalid”. (Doktor_Junkers)

One of the designs which resulted from this venture was the Fw 190 Strahljäger (jet fighter), a curious design that first appeared in documents on November 5, 1942. This design explored the feasibility of replacing the BMW 801 with a Focke-Wulf designed turbojet engine. Even before 1942, the Focke-Wulf firm looked into the possibility of replacing the BWM 801 with a turbojet. Dr. Otto Pabst, a Focke-Wulf engineer, told British officials after the war that he attempted to design a jet engine which would be used for the Fw 200 Condor bomber before the Second World War started. The report which entails his interview states: “Dr. Pabst had also worked on a gas turbine engine to be constructed by Focke-Wulf, which consisted of a double entry radial compressor and a single stage axial flow turbine with a single annular burner chamber which was expected to produce 600 kg (1,300 lb) thrust at 11 km (7 mi) or 2 kg (4 lb) thrust at sea level.“ The 4 lb / 2kg thrust at sea level is likely an error by the document author, and the more realistic thrust would be 440 lb / 200 kg. The engine in question was the Focke-Wulf T.1, and this same engine was envisioned to power the Fw 190 Strahljäger.

Much of the Fw 190 Strahljäger’s developmental history is unknown due to poor documentation and the project’s short lifespan. It would appear that the Fw 190 Strahljäger was designed with the intent of making the turbojet nose easily adaptable to standard Fw 190 airframes. Surprisingly, estimated performance graphs on the Fw 190 Strahljäger exist and demonstrate improvement over the standard Fw 190 A variant. Despite this, however, the Fw 190 Strahljäger’s top speed was lower than the Heinkel firm’s He 280 jet fighter and the Messerschmitt firm’s Me 262 fighter. As such, the Reichsluftfahrtministerium decided that the project was not worth pursuing and priority was given to the other firm’s jet fighter programmes. As such, the Fw 190 Strahljäger project would come to an end either in very late 1942 or early 1943, after only two or three months of development time. The original intent to replace the BMW 801 with a turbojet failed, and the Fw 190 program would evolve to utilize improved and reliable conventional reciprocating engines and propellers.

Fact or Fiction? – Author’s Analysis

With the mysterious and unique nature of the Fw 190 Strahljäger design, several online publications from recent times have made several claims about the project, with the most important being that a Fw 190 was actually converted to test the turbojet. This claim is certainly false, as primary documentation and credible historians show that the project did not even make it past the drawing stage. Although the Focke-Wulf firm could have easily taken a factory fresh Fw 190 off of the production lines to test this, just because they could does not mean they did.

A fake photo of the Fw 190 Strahljäger. Several discrepancies in this photo gives away it’s doctored nature. (greyfalcon.us)

There does exist a photo which claims to be evidence that a Fw 190 Strahljäger was built, but there are several discrepancies which suggest that it is fake. For one, the landing gear seems rather plastic, and the shadows are questionable. The shadow of the main wing suggests it is evening or morning and the sun is off to the left, while the shadow from the tailplane is projected as if the sun is behind the plane. Furthermore, it appears that two Werfer-Granate 21 rocket launchers are hung beneath the wing. If a hypothetical aircraft was converted to test the engine, it would make no sense for it to retain the launchers especially when it takes little time to remove them. Lastly, it seems that the nose exhaust is at the wrong angle relative to the fuselage. In conclusion, this appears to be a photo of a model which has been bleached to give the black and white effect. FotoForensics (used to detect photoshopped images) does not appear to suggest that the photo was modified, but this could possibly be due to the image not being the original one.

Other than that, a curious nomenclature which has surfaced in recent times suggests the turbojet-powered Fw 190 would be called the Fw 190 TL (TurboLader Strahltriebwerk – Turbocharger Jet Engine). However, this claim is questionable as official documents only state the name was “Fw 190 Strahljäger”. This can possibly be chalked up to misinformation.

Design

A diagram showing the turbojet engine in detail, along with some of the statistics of the aircraft. (Projekt ’46)

The Fw 190 Strahljäger was a 1942 project to mate a Focke-Wulf designed turbojet engine with a standard Fw 190 A airframe. According to credible secondary sources and an interview with former Focke-Wulf engineer Otto Pabst, the engine which would power the Fw 190 Strahljäger “consisted of a double entry radial compressor and a single stage axial flow turbine with a single annular burner chamber which was expected to produce 600 kg (1,322 lb) thrust at 11 km (6.8 mi) or 2 kg (4 lb) thrust at sea level”. As mentioned earlier, the 4 lb / 2 kg thrust was likely an error and the actual engine would produce 440 lb / 200 kg of thrust at sea level. The engine was the Focke-Wulf T.1 turbojet. The exhaust of the turbojet would be passed through a ring-shaped outlet between the engine and the fuselage. The exhaust passed through the side and bottom, but not the cockpit on the top. The engine would be accompanied by 370 gal / 1,400 l fuel, which the engine uses at 309 gal / 1,170 l per hour. This would give the Fw 190 Strahljäger a total flight time of 1.2 hours or 72 minutes.

A postwar Allied report which shows the Fw 190 Strahljäger’s blueprint. (Author’s Collection)

The Fw 190 Strahljäger’s armaments consisted of two 7.92x57mm Rheinmetall-Borsig MG 17 machine guns mounted on the engine cowl and two 20x82mm Mauser MG 151/20 cannons, one in each wing. It is unknown whether or not the aircraft would have been able to carry ordinance.

Official graphs of the Fw 190 Strahljäger’s estimated performance exist. Some fundamental specifications are listed in the Specifications Table below.

Operators

  • Nazi Germany – The Fw 190 Strahljäger was intended to replace the Fw 190’s troublesome BMW 801 engine, but the design did not go into production due to several factors.

Focke-Wulf Fw 190 Strahljäger*

* – Information taken from “Das Focke-Wulf Strahltriebwerk wird an die vorhandene Zelle Fw 190 angebout” published in 1942 by the Focke-Wulf Flugzeugbau AG and “Luftwaffe: Secret Jets of the Third Reich” published in 2015 by Dan Sharp

Wingspan 34 ft 5.78 in / 10.51 m
Wing Area 197 ft² / 18.3 m²
Engine 1x single stage axial flow turbine Focke-Wulf T.1 turbojet
Engine Ratings 4 lb / 2 kg at Sea Level*

1,300 lb / 600 kg at 7 mi / 11 km

* – Likely an error in the document, the more realistic thrust would be 440 lb / 200 kg

Armor Weight 205 lb / 93 kg
Flight Weight 8,267 lb / 3,750 kg
Fuel Capacity 370 gal / 1,400 l
Fuel Consumption 309 gal / 1,170 l – Per Hour
Flight Endurance 72 Minutes / 1.2 Hours
Climb Rate 29,527 ft / 9,000 m in 7.7 minutes
Speeds 467 mph / 752 km/h at Sea Level

512 mph / 824 km/h at 29,527 ft / 9,000 m

Crew 1x Pilot
Armament 2x 20x82mm Mauser MG 151/20 cannon

2x 7.92x57mm Rheinmetall-Borsig MG 17 machine gun

Gallery

Illustrations by Ed Jackson

Artist’s Conception of the Fw 190 Strahljäger

Sources

Primary Sources:

  • Das Focke-Wulf Strahltriebwerk wird an die vorhandene Zelle Fw 190 angebout (Rep. ?). (1942). Focke-Wulf Flugzeugbau AG.

Secondary Sources:

  • Nowarra, H. J. (1993). Die Deutsche Luftrüstung 1933-1945 (Vol. 2). Koblenz: Bernard & Graefe Verlag.
  • Sharp, D. (2015). Luftwaffe: Secret Jets of the Third Reich. Horncastle, Lincolnshire: Mortons Media Group.

 

Focke Wulf Ta 154 Moskito

Nazi flag Nazi Germany (1943)
Heavy Fighter – 52 ~ 97 Built

V1 being piloted by Kurt Tank. (Monogram Close-up 22)

Designed as a stopgap to combat the ever-growing numbers of Royal Air Force bombers and de Havilland Mosquitos, the Focke-Wulf Ta 154 was a project plagued with problems, from the glue used for its wooden construction to the unreliable landing gear. After the construction of dozens of prototypes and variants the project was eventually canceled due to inadequate performance and the lack of skilled workers available able to handle the plane’s specialized wooden construction process.

Development

Until the large RAF (Royal Air Force) bomber offensive on Cologne (Köln), Essen, and Bremen in mid-1942, the Luftwaffe had focused on developing offensive aircraft. Shortly after these raids, Generalfeldmarschall (Field Marshal) Erhard Milch, the Minister of Air Armaments, held a development conference to spark ideas for possible uses of the Jumo 211 engine. Afterward, Milch made it clear that using “homogenous wood” was a viable option for producing light airplane airframes. The term ‘homogeneous’ refers to the fact that the construction material was all of the same type of plywood. Coincidentally, Milch was also very interested in the creation of a new light, high-speed night bomber.

Blueprint of the Ta 154 before receiving its final designation. (Monogram Close-up 22)

In September of 1942, Focke-Wulf presented the concept of developing a plane equivalent to the De Havilland Mosquito to the Reichsluftfahrtministerium (RLM, the Nazi Ministry of Aviation). It was detailed as being a high-speed, dual-engined, and unarmed bomber. Focke-Wulf’s proposal would be constructed of 50% wood, 39% steel, and 11% fabric (it is not specified whether this was by weight or volume). The RLM immediately gave Focke-Wulf a high-priority contract. The design continued to be refined as a high-speed bomber until 16 October 1942, when Generalfeldmarschall Milch decided to voice the importance of the aircraft’s secondary role as a night fighter. At the time, Germany was in dire need of twin-engine fighters with a large operational range in order to combat the growing waves of Allied bombers, which carried out their missions day and night. In order to satisfy Milch’s requirements, the aircraft was now to be equipped with a FuG 212 search radar and a fixed armament of two MK 103 and two MG 151 cannons.

Cutaway of the Ta 154’s wing spar. (National Air and Space Museum Archives)

With the Ta 154 being constructed mostly of plywood and having promising performance estimates, the Technische Amt (Technical Research Office) was highly interested. They believed they had finally found a second generation night fighter that could adapt to the material shortages facing the Reich at that point and capable of replacing the aging Bf 110. Consequently, Erhard Milch focused his attention even more on the Ta 154’s night fighter capabilities and decided to stop pursuing high-speed bomber research. On 13 November 1942, the Technical Research Office continued their support for the project, then known as the “Ta 211” or the “Focke-Wulf Night Fighter,” and urged Focke-Wulf to continue developing the aircraft. Shortly after, the aircraft received the designation “Ta 154,” which it would keep for the duration of its existence.

On 8 January 1943, just days after Focke-Wulf was told to construct ten prototypes of the Ta 154, the “Ta 154 Startup Conference” took place. At the conference, it was made clear that while the project was promising, there were not enough skilled woodworkers to produce the aircraft. In addition, it was correctly theorized that the Jumo 211 wouldn’t produce enough horsepower at altitude to match the enemy’s aircraft development. The Technische Amt requested an armament of four MK 103 cannons, but in March of the same year, an analysis of the plane revealed that the nearly eight foot long cannons would not be able to fit. It was decided in June 1943 that production of the Ta 154 would be separated into three areas, Silesia, Thuringia, and the Warthe District, with the Warthe District being responsible for the most variants.

Kurt Tank at the controls of the V1 shortly before takeoff. (Tank Power No.304: Focke-Wulf Ta 154)

After only 9 months in the making, the first prototype took flight in early July 1943, flown by Hans Sander. It is often publicized that Kurt Tank, designer of the plane, piloted the Ta 154 on its maiden flight, but this is incorrect, as he was too important to risk in such a potentially dangerous test. Sander later described the plane as being easier to control than the Heinkel 219, which he had flown prior. However, performance was not up to par with the estimates Focke-Wulf started with. Problems continued when it was speculated that installing the FuG 212 radar, flame dampers, and drop tanks requested by the Technische Amt would slow the Ta 154 down to an estimated 360 mph (580 km/h) at altitude. Not only would it slow the aircraft significantly, but it would also lower the service ceiling from 34,100 ft (10,400 m) to 30,800 ft (9,400 m). Due to this, Focke-Wulf demanded the delivery of the more powerful Jumo 213 engines the aircraft desperately needed. Focke-Wulf was promptly declined and were told the engines would be ready in mid-1944.

Kurt Tank taxiing the V1. (Monogram Close-up 22)

On 29 October 1943, a very successful Luftwaffe pilot by the name of Thierfelder test flew the Ta 154. Although he praised the Ta 154, RLM’s head of planning, Oberst Diesing, criticized the plane just months later, stating that any ordinary pilot would not have the same positive experience. The Oberst’s critiques didn’t stop there, however, as he alleged that pieces of the aircraft fuselage fell off when firing the guns and airframe vibrations would discourage pilots from flying the aircraft.

During another conference on 17 March 1944, a date for the start of production could not be set due to the lack of trained workers experienced with handling the plane’s bonding materials and insufficient bonding resin. In addition, the delivery of the Jumo 213 engines was set back further, and it was decided to complete the first production model in the coming months. On 12 April 1944, flight captain Hans Sander, who test flew both the Fw 187 and Ta 154, presented a prototype to Hermann Göring. Göring already had a massive interest in the development of the Ta 154, and the demonstration only fortified his overinflated view of the plane. Soon afterward, the prototype construction program called for prototypes V1 through V9 to be fitted with new metal control surfaces. Unfortunately, the V3 had recently crashed, and the V4 was being repaired after it had crashed.

V1 being towed prior to taking off. (National Air and Space Museum Archives) [Colorized by Michael Jucan]
In mid-1944, trials at Langenhagen uncovered more problems, including the weakness of the landing gear and its hydraulics. Focke-Wulf released a report soon after detailing the total number of crashes so far. V1, V3, V4, V5, V8, and V9 had all crashed from 1943 to May 1944. The crash of the V8 had been caused by an engine fire, resulting in both the pilot and radio operator dying in the crash. Had the cockpit been made of metal, the crew would have survived. This motivated all those working on the Ta 154 to produce a metal fuselage or continue working on the C model, which possessed a metal nose and cockpit.

On May 29, 1944, RAF bombers bombed the factory in the Posen province, as well as destroying the glue manufacturing facility owned by the Goldschmitt Company (Tegofilm). There was also an attempt by Allied fighters to strafe the Langenhagen airfield where the Ta 154 was being tested. This was planned by the Allies to stop the planned production of the Ta 154, as it was believed that it could prove a worthy opponent to their air superiority. In the end this, along with shifting priorities, contributed to the termination of the Ta 154 program.

The V7 at Langenhagen shortly before takeoff. (Monogram Close-up 22)

More problems continued to arise in late-1944, as the mounts for the MK 108 cannons could not handle the recoil of the large caliber gun. Consequently, any Ta 154’s that did see combat were only fitted with the remaining two MG 151/20 cannons and did not have a metal fuselage. Those aircraft were deployed in Northern Germany. Furthermore, finding a suitable source for resin was proving ever more difficult. More prototypes had been planned under the names V1a, V11, V14a, and V24, with the last two being planned for static testing of the C variant. During another meeting on May 24th between Kurt Tank, Milch, Galland, Heinkel, Vogt, Frydag, Saur, and Göring, Tank finally admitted that the project was stalled because of the lack of the necessary resin. Moreover, Göring was becoming disappointed in the engine’s performance affecting the entire aircraft and feared that upgrading to the Jumo 213 would still leave much to be desired. Göring continued to voice his concerns with the wooden underside of the aircraft which made belly landings impossible. Tank’s Ta 154 was now on the chopping block. On 6th July, 1944, GFM Milch notified Focke-Wulf that the Ta 154 and Ta 254 programs would be terminated immediately.

All the remaining aircraft were left to sit at airfields. This resulted in most being destroyed in air raids and strafing attacks by Allied planes. Of the few remaining Ta 154’s used by separate night-fighter groups, many were destroyed to prevent capture by Allied troops. Of the 50-100 complete aircraft and many incomplete airframes, the Allies found a single Ta 154 A-1 intact, formerly used by NJG 3 (Nachtjagdgeschwader 3 / Night Hunter Squadron 3) at Lechfeld. The Ta 154 was placed behind a stack of jet engines waiting to be scrapped. It is likely that any captured Ta 154’s were scrapped, as none survive today. There is, however, a replica of the forward sections of the V3 at the Luftfahrttechnisches Museum in Rechlin, placed there in 2006. Many replicas exist at the museum, including the Me 262 HG I, He 162, and Ju 388.

Variants

V1 after it has received its designation. (Monogram Close-up 22)

There were many different variants of the Ta 154 built or proposed despite its relatively short lifespan. The first prototype was completed in July 1943, with prototype numbers ranging from V1 to V23. V1 through V10 were the first batch of prototypes ordered by the RLM. V11 through V14 were static airframes meant for destructive tests, with the former three resembling A models, and V14 resembling the C variant. V15 was a prototype of the A-2 variant. The use of V16 through V21 is not clear, but V20 is thought to have been the prototype for the C-1 variant, which was never produced. V22 was particularly special because of its lengthened fuselage, and there exists a photo of its wreckage. V23 is less known, but both the V22 and V23 were test beds for the Jumo 213 A. There is close to no information detailing prototypes past V10. Only brief explanations of their purpose is available.

The A-0 model was the pre-production version, of which a total of about twenty-two were constructed. They were equipped with FuG 220 radar, but had their flame dampers removed. The A-1 was the first production variant, very similar to the A-0, of which six were built. The A-2 variant was almost identical to the A-1 in all aspects, and four were built. The A-4 variant featured the addition of upturned wing tips to aid in lateral stability. Only two A-4s are known to have been built.

After the first A model Moskitos were tested, the B model was drawn up. It was based on the A-4, but incorporated a bubble canopy and a metal nose section to protect the pilot in case of belly landings. In early December 1943, however, Technische Amt decided to abandon the Ta 154 B model, and instead focus on the production of the C model, which also had a bulbous canopy, but now had an extended fuselage. It was during this time that the D variant was also realized, but was soon renamed the Ta 254. It would be equipped with Jumo 213 engines, MW 50 injection, and larger wings. No B, C, or Ta 254 models were built.

Production

The backside of the A-1. (Tank Power No.304: Focke-Wulf Ta 154)

The process to build the Ta 154 was not expensive in regards to the amount or costs of the necessary materials, but was pricey in terms of the manpower required for its careful assembly. The fuselage of the Ta 154 alone took four hundred hours to complete. All kinds of jigs and presses were constructed to aid in the process of molding the wood to the correct shape. The key to making so many Ta 154s was having as many workers as possible, but the curing process for the glue resin that was used took up to a full day to cure, which meant lots of time was spent waiting rather than working. Unfortunately for Focke-Wulf, the amount of workers that were experienced in working with these materials were few and far between. This meant the quality of the planes came down to the craftsmanship of each individual worker. Compared to the quality of the RAF Mosquito, the Ta 154 was inferior. The German wood workers were not used to the pressures of wartime production that the British were accustomed to.

The Ta 154 was trialed in some unorthodox ways. To test the strength of the components, a mockup missing both engines and a large portion of its wings was built specifically to be dragged underwater by a towing unit. This was done in 1943 at Lake Alatsee in Füssen, Bavaria. The towing unit was an “FGZ”, a trio of pontoon boats with a large crane in the center of the three. The mockup was dragged underwater at speeds up to 8.45 m/s (16 knots, 30 km/h) to simulate the pressure of flying. There were a total of six of these tests, and on the sixth test, the damage to the mockup became extensive. The nose cone became deformed, each end of the cut-off wing sections were mangled, and the canopy was broken.

Role

The Ta 154, although originally intended to be a high-speed bomber, was fully realized as a night fighter. The purpose of a night fighter is to counter aircraft, specifically bombers in this case, at night or in low visibility conditions. Such an aircraft was highly valued by the Luftwaffe in their efforts to counter the nightly RAF bombing raids targeting German industrialized zones.

Operational Service

Very limited information is available on the actions of the Moskitos assigned to 3.NJGr 10 and NJG 3, however, on March 22, 1945, four Ta 154s were spotted at Stade Airfield. They were observed next to Ju 88 and He 219 night fighters, as well as one undergoing armament tests at a range on the base. Three of the four Ta 154s were covered in light-colored paint, while the last was in a spotted camouflage. To back up the evidence that several were in operational service, a document from Junkers on March 16, 1945, details several Ta 154s being assigned to III./NJG 3. The document proceeds to tell of the experience of the Ta 154s against De Havilland Mosquitos, a fight during which the British plane usually came out on top. Another document from the British, ATI 2nd TAF Report A 685, was made on May 10, 1945. This report detailed the discovery of a crashed Ta 154 in operation as a night fighter on May 6, 1945. The camouflage pattern was a light blue on the majority of the aircraft, with gray spots decorating the top half of the plane. The crew of the aircraft was nowhere to be found, and the aircraft was looted by locals. In addition, the horizontal stabilizer was completely metal, and an angled wing tip device was fitted to improve stability. This points to one of two A-4s produced.

Design

V1 in its original paint scheme. Note the absence of flame dampers. (Monogram Close-up 22)

The Ta 154 “Moskito” was a twin-engined heavy fighter with shoulder-mounted wings, fuselage-mounted horizontal stabilizers, a tricycle landing gear arrangement, while being composed almost entirely out of wood. Perhaps the least noticeable characteristic of the Ta 154 that gave it major problems was its wings. They had no dihedral, which resulted in instability in turns. This problem was fixed in the A-4 variant that took advantage of upturned wingtips. The problem that affected the Ta 154 the most was failure of the front landing gear assembly. Because of the tricycle landing gear arrangement, the front gear had to be long enough to allow clearance for the propellers on the ground. The length of the front landing gear and the lack of thick supports meant failures happened often. The crew of the Ta 154 almost exclusively consisted of a single pilot and a radio operator. The Ta 154 was equipped with a multitude of different radio and radar instruments. This includes the FuG 212 or FuG 220 search radar, FuG 17 VHF Transceiver, PeilG VI direction-finding set, FuBL 2F, FuG 101 altimeter, FuG 25 IFF set, and FuG 28a transponder.

The Ta 154 was often equipped with flame dampers, which are fitted to the exhaust of the engines. The purpose of flame dampers is to dampen engine noise and decrease the visibility of flames exiting the exhaust. The Ta 154, with the exception of very few variants, was equipped with two Jumo 211 F/N/R engines. The variants that did not have those specific engines were provided with Jumo 213 A/E engines that marginally improved the Ta 154’s performance. The A-1 and A-2 variants were equipped with MW 50 injection, which was a combination of water and methanol that both increased boost pressure substantially and allowed the engine to suck in more air. This injection could result in up to hundreds more horsepower than the engine would normally run, but could only be used in short bursts. GM 1, a nitrous-oxide injection system, was also proposed for the A-2 variant. Concerning armament, the Ta 154 was armed with two 20 mm MG 151/20 and two 30 mm MK 108 cannons, although field modifications were made to individual planes. Some modifications included replacing the original armament with two or four MG 151/20’s, or, in rare cases, four MK 108 cannons. The typical ammo count for an armed Ta 154 was 300 rounds total for the MG 151s, and 200 round total for the MK 108 cannons. A bomb load of a single 500kg bomb was proposed for the A-2 variant, but it is unknown whether or not this was attempted. More than one Ta 154 is alleged to have been converted to A-2/U4s, which were equipped with Schräge Musik. Schräge Musik was the German name for upward firing guns that allowed an aircraft to fire on enemies without facing directly at them. This allowed night fighters like the Bf 110 and Do 217 J to catch enemy bombers unaware with gunfire from below them.

At the end of the Ta 154 program, a radical idea to rig up an Fw 190 on a superstructure above spare Ta 154s was realized. The interior of the Moskito would be filled with explosives, as well as replacing unneeded fuel tanks with more explosives. The Ta 154 fly unmanned, and the pilot of the Fw 190 would maneuver both planes on a course into an enemy bomber formation, where the pilot would detach from the Moskito fully laden with explosives. Once the Moskito reached the middle of the formation, it would be remotely detonated by the pilot of the Fw 190. Just like many variants of the Ta 154, this was also never completed.

Variants

Prototypes

  • Ta 154 V1 – First prototype, designated TE+FE, not fitted with armament or flame dampers and equipped with Jumo 211F engines powering three-bladed VS 11 propellers, later retrofitted with Jumo 211N engines. Its first flight took place on July 1, 1943, and it crashed during testing on 31 July 1943 due to landing gear legs collapsing upon landing.
  • Ta 154 V2 – Second prototype, designated TE+FF, fitted with flame dampers and FuG 212 C-1 radar but unarmed. Later retrofitted with Jumo 211N engines. Destroyed in an air raid on August 5, 1944.
  • Ta 154 V3 – Third prototype, designated TE+FG, identical to V2 except for a larger vertical stabilizer. Crashed on 28 February 1944 due to the nose wheel buckling and destroying the nose section. Later damaged beyond repair in an air raid in mid-1944.
  • Ta 154 V4 – Fourth prototype, designated TE+FH, first flight took place on 19 January 1944. Later retrofitted with a raised canopy and an MG 81 in the dorsal position behind the pilot. Crashed on 18 February 1944 due to landing gear experiencing an uncommanded retraction upon landing.
  • Ta 154 V5 – Fifth prototype, designated TE+FI, crashed on 7 April 1944 due to landing gear failure on landing.
  • Ta 154 V6 – Sixth prototype, designated TE+FJ. Possibly captured by Soviet troops at Rechlin.
  • Ta 154 V7 – Seventh prototype, designated TE+FK, painted in RLM 75/76 camouflage pattern, fate unknown.
  • Ta 154 V8 – Eighth prototype, designated TE+FL, first Ta 154 equipped with Jumo 213 engines and VS 111 propellers. Crashed on 6 May 1944 due to an engine fire, both crew members, Otto and Rettig, were killed on impact.
  • Ta 154 V9 – Ninth prototype, designated TE+FM, crashed on 18 April 1944 due to the right wingtip striking the ground, killing H. Meyer on the ground.
  • Ta 154 V10 – Tenth prototype, designated TE+FN, equipped with Jumo 213A engines, fate unknown.

Production Variants

  • Ta 154 A-0 – Pre-production variant fitted with FuG 220 Lichtenstein SN-2 radar and flame dampers removed.
  • Ta 154 A-1 – Production variant, fitted with Jumo 211F, N or R engines
    • Ta 154 A-1/R1 – equipped with GM 1 and an MG 81 in a new dorsal position.
  • Ta 154 A-2 – Fitted with two MG 151/20s and two MK 108 cannons, proposed to equip GM 1 NOS injection and one 500 kg bomb.
    • Ta 154 A-2/U4 – Night fighter variant, same armament as A-2, with the addition of two diagonally placed MK 108 cannons in the rear fuselage. (Schräge Musik)
  • Ta 154 A-4 – Fitted with two MG 151/20 (200 rpg) and two MK 108 (110 rpg) cannons and FuG 218 radar. The most interesting part of the A-4 was the addition of upturned wingtips.
  • Ta 154 B-1 – Proposed two-seat night fighter variant with a raised canopy, metal nose section, drop tanks, and Jumo 211N engines. Research discontinued in favor of the C variant with Jumo 213 engines.
  • Ta 154 C – Proposed variants to be fitted with Jumo 213A engines and incorporating a metal nose section as well as a raised canopy.
    • 5 cm B.K. armed Ta 154 C – A concept of a Ta 154 C variant armed with a 5 cm B.K. 5 cannon conceived in early 1944. None were produced.
  • Ta 254 A – Proposed variant family with Jumo 213E engines, MW 50, four broad-blade VS 9 airscrew assembly and longer wings, enlarging the wing area to 452 ft2 (42 m2)
  • Ta 254 B-1 – Proposed two-person night fighter variant with metal nose section, powered by two DB 603L engines driving VDM propellers.
  • Ta 254 B-2 – Proposed three-person day fighter variant with metal nose section, powered by two Jumo 213F or G engines equipped with three-bladed VDM propellers.
  • Ta 254 B-3 – Proposed one-person all-weather fighter, powered by two DB 603L engines and to be fitted with MW 50 field modification.
  • Ta 154 Mistel – A proposed variant of an unmanned Ta 154 A-4/U3 filled with explosives with an Fw 190A attached above via a detachable superstructure. The 190 pilot would fly the two planes into an enemy bomber formation, detach the superstructure, and detonate the Ta 154’s explosives.

Operators

  • Nazi Germany – A-1 variants were used by the 3rd Staffel of the Nachtjagdgruppe 10 (3.NJGr 10) and Nachtjagdgeschwader 3 (NJG 3). It is not known whether they were lost in combat or achieved any air victories.

Focke-Wulf Ta 154 A-0 Specifications

Wingspan 52 ft 6 in / 16 m
Length 41 ft 4 in / 12.6 m
Height 11 ft 10 in / 3.6 m
Wing Area 348¾ ft² / 32.4 m²
Wing Loading 56.58 lbs/ft2 / 276.23 kg/m2
Engine 2x 1,410 hp (1036 kW) Jumo 211F/2 liquid-cooled inverted V12 piston engine
Propeller 2x 3-blade VS 9 broad-blade airscrew assembly
Powerplant Ratings
Horsepower output Revolutions per minute (rpm) Altitude
Take Off 1,340 hp 2,600 rpm Sea Level
Normal

(Approx. 84% Throttle)

1,006 hp 2,050 rpm 7,200 ft / 2,200 m
853 hp 2,100 rpm 12,500 ft / 3,820 m
907 hp 2,240 rpm 19,400 ft / 5,900 m
670 hp 2,340 rpm 27,900 ft / 8,500 m
Military

(100% Throttle)

1,198 hp 2,270 rpm 6,200 ft / 1,900 m
1,004 hp 2,450 rpm 11,500 ft / 3,500 m
1,046 hp 2,420 rpm 17,400 ft / 5,300 m
865 hp 2,470 rpm 23,000 ft / 7,000 m
Fuel Grade 87 Octane Leaded Gasoline
Fuel Capacity 422 US Gal / 1,600 L
Oil Capacity 42⅓ US Gal / 160 L
Weights
Empty 13,580 lbs / 6,160 kg
Combat 17,840 lbs / 8,090 kg
Maximum Take Off 19,730 lbs / 8,950 kg
Maximum Landing 15,490 lbs / 7,025 kg
Climb Rate 1,770 ft / 540 m per minute
Maximum Speed 385 mph / 620 km/h at 19,700 ft / 6,000 m
Cruising Speed 332 mph / 534 km/h at 9,800 ft / 3,000 m
Landing Speed 115 mph / 185 kmh
Range 990 mi / 1,600 km
Maximum Service Ceiling 31,200 ft / 9,500 m
Crew 1 pilot + 1 radar operator
Armament
  • 2x MK 108 (100 rpg)
  • 2x MG 151 (150 rpg)

Gallery

Illustrations by Ed Jackson

Focke-Wulf Ta-154 V1 TE+FE – July 1943
Focke-Wulf Ta-154 V3 TE+FG – March 1943
Focke-Wulf Ta-154 V7 TE+FK – March 1944

Focke-Wulf Ta 154 Replica, Luftfahrt Technisches Museum, Rechlin
Ta 154 V3 replica at Luftfahrttechnisches Museum Rechlin by Peter Cook / CC BY-SA 2.0

Videos

Sources

Primary:

  • D.(Luft) T.3803 Junkers Verstelluftschrauben-Anlage Jumo 211 F und J. (1943)
  • Jumo 211 F und J – Baureihe 1 – Leistungsschaubild. (1941)
  • Focke-Wulf Flugzeugbau GmbH Nr.26a-Mistel Ta 154 A – Fw 190 A-8 “Beethoven”. (18 July 1944)

Secondary:

Heinkel He 162 Volksjäger

Nazi flag Nazi Germany (1944)
Jet Fighter – 116 ~ 270 Built

The Volksjäger Fighter colorized by Michael Jucan

The combined American, British and Soviet Air Forces began to take over the skies above Europe in the later part of the war. Germans were desperate to find a way to fight the combined Allied bomber raids that were slowly destroying German industry which was necessary for continuation of the war. A cheap and easy to build jet fighter was believed to be the solution to the Allied bombing raids. From these aspirations the Volksjäger, “The People’s Fighter,” project was born.

Emergence of the Volksjäger Concept

The men responsible for the creation of the Volksjäger idea and concept were civil engineers Hauptdienstleiter Dipl-Ing Karlo Otto Saur, who was also a member of the Nazi party, and Generaloberst Alfred Keller.

Otto Saur was quick to realize that by 1944 the Luftwaffe was a shadow of its former glory. This was most obvious for the fighter force, which was engaged in a desperate struggle with a more numerous and better equipped enemy. Otto Saur’s conclusion was that a cheap and easy to build jet fighter could tip the balance of power in Germany’s favor again. He was quick to present his idea to Hermann Göring, Reichsluftfahrtminister, the Reich’s Minister of Aviation, who immediately supported it.

Generaloberst Alfred Keller, who was in charge of the flying, training and sports association (Nationalsozialistisches Fliegerkorps – NSFK) also supported the Volksjäger idea. The NSFK organization was also involved in offering several courses, The Flying Hitler Youth (Flieger Hitlerjugend) on how to build model aircraft and glider flying training for schoolboys. In support of Otto Saur’s proposal, Alfred Keller came with his own proposal to use these young boys, with ages between 15 to 17, as pilots for the mass produced Volksjäger. In Keller’s opinion, all that was needed was some short training with gliders which would be supplemented with more training on the Volksjäger.

Many in the Luftwaffe command opposed this project and the idea of using young boys as fighter pilots against the numerous and well-equipped and trained Allied air forces. The greatest advocate against this project was Generalleutnant Adolf Galland, being supported by Willy Messerschmitt, chief designer of the famous Messerschmitt company, and Kurt Tank, the most well-known designer at Focke-Wulf. The most important reason behind this opposition was the fact that, towards the end of the war, Germany was lacking fuel, materials, pilots, production capacity and many other elements. They argued that all available resources should be directed to the development and production of the already existing Me 262 jet fighter.

In the years prior to the collapse of the Luftwaffe, such a concept would most likely never have gained any support from Luftwaffe officials. However, by 1944, the Germans were in a desperate need for a wonder weapon to turn the tides. As Hermann Göring was no longer in Hitler’s good graces, he was desperate to find a way to appease Hitler. The best way to do this was to somehow find a miraculous solution to salvage the Luftwaffe, stop the incessant Allied bombardment of Germany, and provide much-needed support to the beleaguered Wehrmacht. Through these psychological lens, Otto Saur’s and Alfred Keller’s proposals looked like an ideal solution. Despite the great opposition, Hermann Göring kept insisting that the Volksjäger development should begin as soon as possible. The Volksjäger would later be supported by Adolf Hitler and Albert Speer (the Minister of Armaments and War Production).

First Steps

In the search for a new low-altitude fighter, Oberst Siegfried Knemeyer was named responsible for the Volksjäger’s initial requirements. He was in charge of the Technical Equipment Office for flight development of the Ministry of Aviation (Reichsluftfahrtministerium, RLM). Siegfried Knemeyer was an experienced military pilot and engineer who participated in the test flights of many different experimental aircraft designs. From 1943 onward, he was part of Hermann Göring’s cabinet from where he actively supported the development of the new Me 262.

While the Me 262 jet fighter was superior to piston powered Allied planes, it was far from perfect. The most significant problem with the Me 262 was the poor performance at low altitude, where it was an easy prey for Allied fighters. This is also where Allied fighters and close support aircraft were very active and often attacked German airfields, supply trains and ground troops. The already existing Me 109 and Fw 190 were becoming outdated and insufficient by late 1944 standards. In order to effectively counter enemy planes at low altitude, a new design was needed according to Siegfried Knemeyer, who noted (Source: Robert F. He 162 Volksäger Units):

“… It became absolutely essential to develop a high-speed, single-seater fighter that had a sufficiently good performance which would enable it to take off when enemy aircraft were actually sighted. In addition, due to the bombing of our large airfields with long runways, these new fighters had to be able to take off in a very short distance and thus enable small landing grounds to be used. The mass production of such an aircraft had to be on such a scale as would enable the enemy to be engaged at any point and during the entire duration of their flight …… By limiting the endurance and the armament requirement for this new aircraft, the existing jet fighter (the Me 262) would have fulfilled the requirements. However, this aircraft had to be ruled out since it was not possible to produce the numbers that would have been required for combating these low-flying attacks and, in particular, because the provision of two power units per airframe was quite beyond the capacity of industry… “. Based on this, Siegfried Knemeyer gave a list of specifications which the new low-altitude fighter had to conform with:

  • This plane should be able to take off from runways less than 1970 ft (600 m) long.
  • It should be powered by a single jet engine, in order to lower the costs.
  • As the Jumo 004 engine could not be produced in sufficient numbers, another engine was needed. The new BMW 003 was recommended.
  • Maximum speed at sea level should be at least 465 mph (750 km/h).
  • The production process had to be as simple as possible without disturbing the production of the Me 262 and Ar 234.
  • The main building material should be wood. A larger number of furniture manufacturers and carpenters should be included in the production as they had the skill and experience in working with wood that would be needed.

Based on these requirements, the RLM placed an initial order for the new Volksjäger low-altitude jet fighter in July 1944. The first mockup needed to be ready by 1st October, 1944, and a fully operational prototype should have been ready by early December the same year. The main production was planned to begin in early 1945.

The Race for the Volksjäger

The first prototype, V1, built in late 1944. [worldwarphotos.net]
For some time, the Volksjäger seemed like it would remain only a paper proposal, as little progress was made until September 1944. On 7th September, a high priority teleprint message arrived at the Heinkel company. This message was sent by Dipl-ing Karl Frydag, Heinkel’s General Director at the Ministry, but also the leader of the Main Committee for Aircraft Construction and an acquaintance of Otto Saur. The high priority message was addressed to Prof. Ernst Heinkel and his main engineer team. This illicit message contained information including not-yet-published RLM tender requirements for the new Volksjäger jet fighter.

As the official tender request was to be issued by RLM in only a few days, Ernst Heinkel and his team moved quickly to use the small time advantage they had over other possible competitors. The first thing Ernst Heinkel did was to give instructions to reuse the P 1073 paper project that was intended for an RLM request from July. P 1073 was, according to the original plans, to be powered by two HeS 011 or Jumo 004C turbojet engines. One engine was to be mounted on top of the fuselage behind the cockpit and the second one below, right under the cockpit. The maximum speed using the HeS 011 engines was estimated to be around 630 mph (1010 km/h) at 19700 ft (6000 m). P 1073’s wing was swept back at 35° with a “V” shaped rear tailplane. The armament would include two 1.18 in (30 mm) MK 108 and two MG 151/20 0.78in (20 mm) cannons.

Later, due to the new specifications for the Volksjäger, P 1073 was modified to be powered by a single BMW 003 engine. Other changes, such as increasing the dimensions, a new straight wing design and adding new rear twin tail fins. The name was changed to P 1073-15. Further modifications were conducted at the Rostock-Marienehe plant. These included a high unswept wing design, the engine mounted above the fuselage, an armament of only two MG 151/20 0.78 in (20 mm) cannons, a tricycle undercarriage and a weight around 2.5 t. The maximum speed at ground level was 500 mph (810 km/h). It was possible to increase the offensive armament with bombs and 1.18 in/30 mm cannons. The name was again changed to P 1073-18.

By 9th (or 8th, depending on the source) September 1944, other German aircraft manufacturers received the RLM requirements for the new Volksjäger project. According to these, the Volksjäger fighter had to be able to take off in less than 1640 ft (500 m). It had to be powered by one BMW 003 jet engine and the total weight must not must not exceed 4410 lbs (2000 kg). The maximum speed at sea level had to be at least 460 mph (750 km/h). The flight endurance at full thrust had to be at least 30 min. The main armament had to consist of either two MK 108 (with 80 to 100 rounds per gun) or two MG 151/20 (with 200-250 rounds per gun) cannons.

The main construction material would be wood with a smaller amount of steel used. Protection for the pilot, fuel tanks and the main gun ammunition was to be provided. However, since great attention was dedicated to the short take off distance, the manufacturers were allowed to reduce the armor and ammunition load if needed. First proposals from all interested aircraft manufacturers were to be ready in only a few days, as a draconically unrealistic deadline was set for the 14th (or 20th depending on the source) September.

Despite being planned to be put into mass production, only limited numbers of the A-1 version were ever built. [worldwarphotos.net]
Besides Heinkel, which was “unofficially” familiar with the details of this tender a few days before its publication, others aircraft manufacturers participated and submitted their own proposal. The competitors included Arado (E 580), Blohm und Voss (P 211.02), Junkers (marked either as EF 123 or EF 124) and Focke-Wulf. Focke-Wulf actually presented two different proposals (Volksflitzer and Volksflugzeug). Others, like Fieseler and Siebel, lacked the manpower and production capacity to successfully participate in this tender. Messerschmitt did not participate in this competition as Willy Messerschmitt was against the Volksjäger concept from the beginning. He was a great opponent of this project, arguing that increasing the production rate of the Me 262 should have a greater priority and that the Volksjäger was a waste of time and materials which Germany was sorely lacking.

By the end of the competition period, all proposals were submitted to the RLM. After two days, a conference was held in Berlin with the representatives of all five companies, together with officials from the Luftwaffe and RLM. The Arado, Focke-Wulf and Junkers projects were immediately rejected. Even Heinkel’s original proposal came close to being rejected, as it would be complicated to build. It was judged that the best proposal was the Blohm und Voss P 221-02 project, as it was (at least on paper) easier to build and used a smaller quantity of duralumin. At this point, Heinkel representatives were trying to win the competition by arguing that, due to the cancelation of the He 177 and the He 219 programmes, they would have enough production capacity to manufacture the Volksjäger in great numbers. They also proposed to make the entire design far simpler for mass production.

In the following days, there were many difficult and exhausting discussions around the Heinkel and Blohm und Voss projects. There was a sharp debate between Heinkel Dipl-Ing. Francke and the RLM Generaldirektor Frydag which supported the Blohm und Voss project. These discussions caused some delays in making the final decision for the implementation of the Volksjäger project. At the same time, at the Heinkel factory at Schwechat near Vienna (EHAG – Ernst Heinkel AG), work began on calculations and drawings in preparation for the production of the first models of the Volksjäger, marked as the He 500.

The final discussion regarding the competition was held at Hitler residence in Rastenberg, in East Prussia. Hermann Göring enthusiastically and actively supported the He 500 without even considering the Blohm und Voss P 221-02 project. He also gained the support of Adolf Hitler and Albert Speer. Thus, in the end, the Heinkel project was chosen. This decision was also based on the experience that Heinkel had accumulated with the construction and development of jet technology (with the He 178 and He 280) but also due to the significant lobby that this company had.

Although Heinkel’s design won, there were requests for some alterations. For easier production and construction, the design of the tail, fuselage and the landing gear had to be simplified. As was originally planned, the first mockup was ready by 1st October 1944 and the first prototype was to be built by 10th December of the same year. The main production was to begin in January 1945 with 1000 planes per month, which would be increased to 2000 per month. These dates and numbers were, taking Germany’s economic and military situation into consideration, unrealistic and understandably never achieved.

According to Ernst Heinkel, the final designation for the new Volksjäger was meant to be He 500. However, the RLM officials, in the hope of somehow hiding its original purpose from Allied intelligence, gave it the designation “8-162”. In some sources, it is also called “Salamander”. This was actually a code name given for wooden component production companies. The He 162 is also sometimes called “Spatz” (Sparrow), but this name is, according to some sources, related to the He 162S training glider prototype.

Construction of the First Prototypes

The work on the final design was given to the engineers Siegfried Günter and Karl Schwärzler. A large design staff of some 370 men was at their disposal. The design work was carried out at the Heinkel workshop (at Schwechat Air Base) near Vienna. By 15th October, the first sketches and production tools were ready.

The Heinkel factory (in Vienna) was responsible for beginning the serial production of the He 162. In the hope of speeding up production, other factories were included along with many smaller companies. Each of these were to be responsible for producing certain parts and components of the He 162. When all necessary parts for the construction of the first prototype were built, they were to be transported to Vienna for the final assembly. Due to a lack of transport capability and insufficient quality of wooden parts (especially the wings), there were some delays.

Side view of the He 162. The cannon compartment’s wooden door is removed. [warbirdsresourcegroup.org]
Despite the fact that wood was easier to work with, there were huge issues with the quality of the delivered parts. Some of the problems encountered were that the production procedures were often not carried out according to regulations, the glue used was of poor quality, sometimes parts would not fit together. There were situations in which large numbers of wooden parts were returned to the suppliers simply because they could not be used. There were also problems with the first prototype’s engine as it was damaged during the transport and had to be repaired. All the necessary parts arrived by 24th November and the assembly of the first He 162 prototype could begin.

The He 162 V1 prototype (serial number Wk-Nr 200001) was ready for testing by 1st December, 1944. The first series of prototypes had the “V” (Versuchmuster) designation. Later, starting from V3 and V4, the designation was changed to “M” (Muster – model). If it is taken into account that, from the first drawing to the first operational prototype, no more than two months had passed, this was an impressive feat. The V1 prototype was to be tested at Heidfeld but, due to some stability problems with the undercarriage, only limited ground test trials were held.

These problems were addressed by 6th December, when the He 162 made its first test flight piloted by Heinkel’s main test pilot, Flugkapitän Dipl-ing Gotthold Peter. The flight lasted around 20 minutes at speeds of 186 mph (300 km/h). During this flight, probably due to the poor quality of production, one of the three landing gear doors simply broke free and the pilot was forced to land. Beside that, the whole flight was considered successful, there were no other problems and the engine performed excellently.

At the same time, three more prototypes (V2, M3 and M4) were under construction to be used for future tests. The second prototype was transported to Heidfeld (arrived 7th December). During the production of the first series of prototypes, a problem with the wing construction was noted. The main issue was the use of poor quality glue, but at that time this problem was largely ignored.

The moment when a V1 prototype was lost, when the right aileron failed. Unfortunately, the pilot did not survive. [worldwarphotos.info]
On 10th December, another flight was performed for the Luftwaffe military officials at Schwechat. Like in the previous flights, the pilot was Gotthold Peter. In the hope of impressing the gathered crowd, the pilot made a low pass (at 330 ft/100 m) at 456 mph (735 km/h). This flight was going well until the moment when a part of the wing and ailerons were torn off, which caused the pilot to lose control and crash to the ground. Despite having an onboard ejection seat, Peter failed to activate it (possibly due to high G-forces) and was killed in this accident.

The whole flight was captured on a film camera by one of the Luftwaffe officers. The film and the wreck were thoroughly examined by Heinkel engineers who immediately noticed a few things; the wing parts were joined by using low quality glue, the poor aerodynamics of the wing design and the instability of the prototype lateral axis led to the tear off of the wing parts. As a result of this accident, the wing design was strengthened and the maximum flight speed was restricted to only 310 mph (500 km/h). Also, the size of the horizontal stabilizer was increased, the main fuel tanks were reduced in size and the wings’ connection to the main fuselage was reinforced. This accident did not have any negative impact on the continued development on this project which proceeded without interruption.

After this accident, other pilots were reluctant to fly on the He 162. Due to this, Ernst Heinkel was forced to offer a sum of 80,000 Reichsmarks for any pilots who were willing to test fly the He 162. A pilot who agreed to fly was Dipl.-Ing. Carl Francke, who was the technical director of EHAG. He made the first test flight with V2 (serial number Wk-Nr 200002) on 22nd December, 1944. Later that day, a second pilot, Fliegerstabsingineur Paul Bader, made more test flights. Flight trials with the second prototype were carried out without much problems. The V2 prototype was used for testing different wing designs and different weapon installations (two 1.18 in/30 mm Mk 108 cannons). After this, V2 would be used mostly for ground examinations, conversions, equipment testing and for attempts to simplify the overall design in order to ease production.

The third prototype was ready by 20th December, when it was tested by Paul Bader at Heidfeld. While the flight went on without many problems, the pilot noted the poor front ground visibility and vibrations during takeoff and landing. In order to improve the He 162’s wing design, the experienced Dr Alexander Lippisch (who worked on the Me 163) was contacted and included in the project. His proposal for improving the He 162’s stability was to fit small “Ohren” (ears) to the wingtips. As these were later implemented on all produced He 162, they were generally known as the ‘Lippisch ears’.

The M3 and M4 prototypes were the first fighters to be equipped with these wingtips. These two models had strengthened and redesigned wing construction with thicker plywood covering, also to shift the centre of gravity, extra weight was added to the plane’s nose. These modifications improved the He 162’s overall performance and stability significantly. The M3 improved prototype was tested in late February 1945 when it managed to reach an incredible speed of 546 mph (880 km/h). The M4 prototype was ready by the end of 1944 but, due to some engine problems, the first flight was only possible at the beginning of 1945. The first flight tests were carried by Dipl-Ing Schuck on 16th January, 1945. As the M3 and M4 wing design and shape proved satisfactory, they were chosen to be used for the upcoming production of the first He 162A combat operational variant.

The M5 prototype was built but it was never used operationally nor did it ever fly. The M6 prototype, which was intended to be used as base for the He 162A-1 production model, made its first test flight on 23rd January, 1945. The M7 (the base for the He 162A-2) was used for vibration tests and trialing the braking parachute. The M8 was the first to be equipped with two MG 151/20 cannons (120 rounds of ammunition per gun). The M9 and M10 were intended as two seat trainer aircraft versions but none were built. The M11 and M12 were powered by the much stronger Jumo 004D Orkan turbojet engine. These were to be used as base for the He 162A-8. The M13 moniker was never assigned to any prototype due to the belief that this number was unlucky. The prototype models M14 to M17 were never built. The M18 and M19 were powered by the new BMW 003E-1 jet engine which was intended to be used for the He 162A-2 production model. The M20 was used for testing different and simpler undercarriage designs. The M21 and M22 were used for main weapon testing. The M23 and M24 were used for installation of new wing root filters and for handling flight tests.

These prototypes were extensively tested and examined in detail from 22nd January to 12th February. In this period, over 200 test flights were carried out. Not all test flights were successful and without accidents. On 24th February, M20 was damaged during landing due to undercarriage malfunction. The next day, while testing the M3, there was a malfunction that led the pilot losing control of the aircraft. He managed to get out but his parachute did not fully extend, leading to his demise. At the beginning of May, one more prototype was lost in an accident. In total, there were more than 30 prototypes built. It is interesting that, even before the testing of the prototypes was completed, preparations for production of the He 162 were already underway.

He 162 A-1 and A-2

Despite the original plans requiring the start of the production in early 1945, this was never achieved. Due to the chaos in Germany at that time, there were many delays with the arrival of the necessary parts. There were shortages of nose wheels, rudders, interior equipment, weapons parts, poor quality glue and many others. For example, at Rostock, there were more than 139 partly built fuselages which could not be completed due to a lack of parts. There was also a problem with the large number of wings and tails built that were defectuous and unusable. A generalized lack of fuel, transport vehicles and electricity, Allied bombing raids and the use of slave labour also negatively influenced the overall production. Around ten pre-series He 162A-0 (with different prototype numbers) were built and stationed at Schwechat to be used for more testing needed in order to eliminate more problems.

The Soviets flight tested some captured examples of the He 162, but their overall performance proved to be poor. [airpages.ru]
The production of the first series of operational aircraft was delayed and began only at the end of March 1945. The first production series were marked He 162 A-1 and A-2. There are few visual differences between these two models. The only major difference was the armament. The A-1 was equipped with two 1.18 in (30 mm) cannons and the A-2 with two 0.78 in (20 mm) cannons. As the production of 1.18 in (30 mm) cannons was halted due to Allied bombing and the Soviets capturing the production factories, the few remaining cannons were to be allocated to the Me 262. The production of the A-1 was stopped and the exact number of manufactured aircraft is unknown. Due the lack of 1.18 in (30 mm) cannons, the He 162 manufacturers were forced to use the lighter and weaker 0.78 in (20 mm) caliber weapons.

A number of serially produced A-2 aircraft were not used for troop trials, but were instead sent to test centres for future modifications and testing. A small number would eventually reach the German troops in April. While the production of the A-2 would go on until the war’s end, the total number of produced aircraft is unknown.

The He 162 Design

He 162 top view [warbirdsresourcegroup.org]
The He 162 was designed as a high-wing jet fighter with a simple fuselage with clean lines, tricycle retracting landing gear and built using mixed construction. The simple fuselage was built by using a cheap and light metal alloy (duralumin – a combination of aluminium and copper) with a plywood nose and (one-piece) wooden wings.

The fuselage was a semi-monocoque design covered with duralumin. The front part of the fuselage was egg-shaped and had good aerodynamic properties. The nose was made of plywood and was fixed to the fuselage by using bolts. The middle top part of the fuselage was flat and the engine was connected to it. The wood was also used for the undercarriage doors.

The wings were made out of wood and connected to the central fuselage by using four bolts. In order to ease production, the wings were built in one piece. The flaps and ailerons were built using a wood frame which was covered with plywood. The flaps were controlled by using a hydraulic system while the rods were controlled with wire. To help with the stability at the end of the wing, two wingtips (one on each side) were added. These were angled at 55° downwards and made of duralumin. The two-part rear tail was made of metal and was connected to the end cone of the fuselage. The tail rudders were controlled using wires and rods.

The He 162 used a tricycle landing gear design, with one wheel at the front and two more located in the centre of the fuselage. The landing gear was hydraulically lowered and raised. The dimensions of the front nose wheel were 500×145 mm and no brake system was provided for it. Interesting to note is that the front nose wheel, when retracting, partly reached into the lower part of the front cockpit. A small window was provided for the pilot so that he could see if it was fully operational. The two central landing wheels were larger, 600×200 mm. Both the front and the rear landing wheels retracted to the rear. To help with landings, hydro-pneumatic dampers were provided.

The plexi-glass cockpit was made of two parts, the front windshield and the rear hinging canopy which were screwed into the inner bar frame. In order to make the whole construction simple as possible the cockpit was not pressurized. For better ventilation on the left side a small round ventilation window was installed. The pilot cockpit was more or less a standard German design but much simpler. It provided the pilot with good all-around view of the surroundings, but there were some complaints by some pilots for poor front ground view.

The control panel was made of wood, on which the necessary instruments were placed. Only a few were provided for the pilot and these included the speed indicator, panel lights, turn and bank indicator, rate of climb, FK 38 magnetic compass, temperature indicator, AFN-2 display, oil and fuel pressure gauge, fuel level gauge, chronometer, ammunition counters and engine tachometer. The fighter controls were placed as standard in front of the pilot. On the pilot’s left-side, the fuel valve, flap controls, landing gear control, throttle lever and trimming control were located. On the opposite side was placed the radio system (FuG 25A). The pilot seat was of a simple design but equipped with Heinkel’s ejection system with a parachute. The He 162 was one of the first German aircraft to be equipped with an ejection seat as standard equipment. The cockpit was separated from the rest of the plane by a sloped metal plate. This plate was installed in order to provide the pilot some protection in case of emergency (like fuel tank fire etc.). Behind this plate were the oxygen supply tanks with a 3 l capacity.

The engine chosen for the He 162 A-2 was the BMW 003E-1/2 turbojet (in some sources the A version was used). The engine was fixed in a nacelle placed above the central fuselage. The engine consisted of a seven-stage axial compressor, injection nozzle, annular combustion chamber and one single-stage axial turbine equipped with sheet metal heat-resistant blades which were air-cooled. The exhaust nozzle was controlled by an adjustable needle which could be mechanically moved into four positions: Position A for idle, S for start, F for flying at altitudes lower than 26.200 ft (8.000 m) and M for flying at altitudes above 26.200 ft (8.000 m). The BMW 003E-1/2 turbojet could achieve maximum thrust of 1.800 lbs (800 kg).

One He 162 was put on display in London after the war. It still had German markings on it. [aviation-history.com]
When flying at a speed of 500 mph (800 km/h) at 36.100 ft (11.000 m), the maximum thrust would fall down to only 740 lbs/340 kg. To start the engine, a small Riedel piston engine (9.86 hp) was used. This engine could be started either by using an electric starter motor or manually with a ring-pull. The He 162 engine was 11 ft (3.6 m) long with a diameter of 2.3 ft (69 cm) and a weight of 1.375 lbs (624 kg). The estimated life cycle of the engine was only 50 hours. As the engine was positioned above the fuselage, in order to avoid any damage caused by exhaust gasses, a steel plate was placed under the jet nozzle. The position of the engine also means it was easier to mount and repair. It was also easier to replace it with a new one.

The fuel tank was positioned in the middle of the fuselage. In order to save weight and to ease the production, a rubber fuel tank was used. The main fuel tank had a capacity of 695 l and there were also two smaller 175 l tanks located in the wings. For takeoff, up to two smaller auxiliary Ri 502 rocket engines could be installed. They would be located in the lower rear part of the fuselage.

The He 162’s original weapon system consisted of two MK 108 cannons, but the most built version was equipped with weaker MG 151/20 cannons. The two cannons were placed in the lower front part of the fuselage. The main gun’s ammunition was stored behind the pilot, with 120 rounds for each gun. In order for the ground support crews to have access to the gun and ammunition, wooden door panels were provided. For the gunsight, the Revi 16G or 16B models were used. There was also a gyroscopic EZ 42 gunsight tested on one He 162, but this was never adopted for service.

Other Versions and Prototypes

Despite the improvements done to the main production versions, there were still room for enhancements and modifications of the He 162. Most efforts were devoted to the installation of stronger engines and various aerodynamic improvements in order to achieve the highest speed possible. There were also plans to make the He 162 much cheaper and easier to produce. Different armament loads were also tested or proposed. Most of these proposals remained on paper only, but some received limited testing.

The first in line of the intended improved He 162 was the A-3 version. This was meant to be armed with 1.18 in (30 mm) MK 103 or MK 108 cannons (depending on the source) located in a redesigned front nose, but it is unclear if any were ever built. Later, an identically armed version (A-6) with a redesigned and longer fuselage (30 ft/9.2 m) was proposed but, like the previous version, none were probably built.

In order to increase the He 162’s maximum speed, it was intended to install the Jumo 004D “Orkan” (2.866 lbs/1.050 kg of thrust) engine to replace the standard jet engine used. The new engines were to be transported to Schwechat and tested there on fully operational prototypes. The whole process was too slow, and only as late as March 1945 were the few prototypes almost finished, but due to the war’s end, none were ever fully completed or tested. This modification is known under the name He 162 A-8. The A-9 (in some sources marked as He 162E) was to be powered by one BMW 003R engine, supported by a second BMW 718 rocket engine for extra power. The engines were tested but they were never installed on any He 162. While Heinkel conceived up to 14 different proposals for the “A” version, beyond those mentioned above, almost nothing is known about the others.

Note that the following designations (B, C and D) were never found in any EHAG official documentation and are not known to have been used by the Germans. This article will use them for the sake of simplicity only. (Source: Miroslav B. and Bily B.)

Despite the fact that the He 162 was designed to be simple and easy to build, the engine was still relatively difficult to produce in great numbers. In hope to increase the number of engines being built, the Germans began testing the less demanding technology of pulse jet engines (used on the V-1 flying bomb). The first proposed pulse jet engine to be mounted on the He 162 (generally known as He 162B) was the Argus As 004 (with 1,102 lbs/500 kg of thrust). This was followed by a second proposal to mount two Argus As 014 (each with 739 lbs/335 kg of thrust) pulse jet engines. The single engine version is named, in some modern sources, as B-2 and the two engine version as B-1. None were ever built and tested, possibly because the pulse jet was considered inferior to jet engines.

Two different wing configurations proposed, often incorrectly marked as the “D” and ”C” versions. [airvectors.net]
There were many experiments with different wing designs and shapes in order to improve the flying performance and ease production. Two similar designs were based on all-metal swept wings. The first (today called the He 162C) had a back swept wing design with the second half of the wings bent down at a sharp angle. The second (often nowadays referred to as the He 162D) had an unusual forward swept wing design. Both of these models were to be powered by one Heinkel-Hirth 011A turbojet engine (2,866 lbs/1,300 kg of thrust). Both models also had different rear tail designs. The maximum estimated top speed with this engine was up to 620 mph (1000 km/h). There were also other proposed wing designs but, beside these two, none seem to have been tested. Only a few incomplete prototypes were built and they were captured by the advancing Allied forces by the end of the war.

In autumn of 1944, it was suggested to use the He 162 for the German “Mistel 5” weapon projects. This configuration would consisted on one unmanned Arado E 337a glide bomb that would be guided by an He 162 connected on top of it. As the Arado E 337a was never built, this project remain on paper only.

At the end of January, there was a proposal to modify a few He 162 to be used as “Behelfs-Aufklarer”, in essence improvised reconnaissance planes, but this was never implemented.

The Volksjäger Training Versions

As the Volksjäger project got a green light for its implementation and orders of planned production in the thousands, a solution on how to train such large numbers of new pilots was needed. One proposal was to begin training with gliders (including a glider version of the He 162) and, after a short period of time, the pilot (usually from the Hitler Youth) would learn to fly on the training versions of the He 162. The glider version was named He 162 S “Spatz” (Sparrow). According to other sources (M.Balous and M.Bily), the “S” stands for Segelflugzeug (glider).

These gliders had to be designed and built to emulate the He 162’s takeoff and landing properties as much as possible. In order to stay in the air, the gliders were to be connected to a 1 km long cable which was attached to a 150 hp motorized winch. The gliders were to have two seats, one for the future pilot and one for the instructor. One prototype was flight tested in late March 1945 by Ing Hasse. Even the famous German woman test pilot Hanna Reitsch made at least one flight in it. The He 162 S was very similar to the original He 162, with some modifications like larger wings and fixed landing gears. The choice for using gliders as replacement for training planes was based on the general lack of fuel. Around ten of these gliders were ordered and, if testing showed good results, some 200 were meant to be built. But, due to the bad economical situation in Germany at the time, only a few were ever built at Schönhage (Hannover).

The second training aircraft was a fully powered two seat trainer version. There is no official military marking or name for this version, but today it is often known as the He 162 Doppelsitzer (two seater). This version was to be powered by a BMW 003E-1 or E-2 engine. It was to have a second seat for the instructor placed behind the main cockpit. In order to make more room in the unmodified He 162 fuselage, the gun, ammunition and oxygen tanks had to be removed. The production of this version was planned to begin by the end of 1944 and was to be built by DLH (Deutsche Lufthansa) at Oranienburg. Only one incomplete prototype may have ever been constructed.

To help the training of new pilots at the Luftwaffe test center (Rechlin), a simulator model was built. It had the exact same cockpit like an operational He 162 with all instruments. Its primary purpose was to be used for combat and fire simulator training.

Main Armament Proposal

As already stated, the 0.78 in (20 mm) cannons were, by 1944/45 war standards, simply inadequate and the lack of stronger 1.18 in (30 mm) cannons forced the Germans to search for different (somewhat unconventional) weapons for the He 162.

To increase the offensive armament, the 2.2 in (55 mm) R4M air-to-air rocket was proposed to be installed under the He 162’s wings. Another proposal was to arm the He 162 with the SG 118 Rohrblocktrommel weapon system which consisted of three 1.18 in (30 mm) barrels (connected in a circle), each armed with 7 rounds. The last proposal was to use the 3.14 in (8 cm) Panzerblitz missiles. There were planned to use the EZ 42 gyroscopic gun sight on the He 162, but the single prototype was destroyed in an Allied bombing raid. If any of these proposals were ever been implemented or allocated a version name is unknown but very unlikely.

Production

The Germans were forced to relocate some production facilities deep underground. The Volksjäger was produced in one such underground production base at Hinterbrühl, Austria. Colorized by Michael Jucan [aviation-history.com]
It was hoped by the Luftwaffe military officials that the He 162 would be built in great numbers. They counted on the fact that, by using cheap materials (mostly wood) and by employing many smaller subcontractors (woodworkers and furniture manufactures), the overall costs and time necessary for the production would be reduced.

Several factories were responsible for the production of the He 162 at Heinkel-Nord in Rostock-Marienehe, Heinkel-Sud, Hinterbühl (underground factory), Vienna-Schwechat (prototype production) and Mittelwerke (Nordhausen). In order to increase the production, Heinkel and Junkers made an agreement to use the vast Junkers production capacities. Junkers would be responsible for the production of the majority of the new He 162 planes at Bernburg. Also, a large number of smaller subcontractors were to be included, like EHAG Walldwerk or Pütnitz. The main engine suppliers were Spandau and Zühlsdorf. The armament was to be provided by Deutsche Waffen und Munitionsfabrik at Posnan. The wooden elements would be made at Erfurt, Orla and Stuttgart-Esslingen (these were also building components for the Me 163 and Ta 154). Some 750 man-hours were needed for the He 162, together with 300 man-hours for the engine production. Due to slow production, Hitler gave an order on 27th March, 1945 for the SS to take over the whole Volksjäger project. However, this had only limited (if any) effect on the speed of production.

As it was only built during the last month of the war, when confusion and chaos were ever-present in almost all spheres of political or military life in Nazi Germany, exact information about how many aircraft of this type were built is impossible to find. Depending on the sources, the total production was in the range of 116 to more than 200. According to different Authors: C. Chan (240), D. Mondey (116), F. Crosby (200), A. Ludeke (270), D. Nešić (120). According to the German General Staff Department 6 (Generalstab Abteilung 6), the total number of He 162 built was 116 aircraft. After the war, around many airfields, some 100 He 162 in different conditions were found. Additional 800 aircraft were found in different stages of factory assembly, which also complicates determining the exact number of produced He 162.

On 7th April, 1945 Hitler gave orders to stop any further development and production of the He 162 in favor of the Me 262 and Arado 234. It is hard to say for sure, but as the He 162 was produced until the end of the war, this order seems to never have been fully implemented.

Operational Service

Lineup of Volksjäger captured by the British at Leck in May 1945 [worldwarphotos.info]
The delivery of He 162 fighters to Luftwaffe front units was limited due to many reasons, including slow production, lack of fuel and spare parts and the Allied advance, but eventually, a few units equipped with this aircraft would be formed.

The first operational unit to be equipped with the new He 162 was Erprobungskommando 162 located at Rechlin-Roggenthin. In April, due to the rapid Allied advance, the unit had to reposition near Munich. This was actually a test unit and, for this purpose, a number of the most experienced German pilots (some of them having experience in flying jet aircraft) were allocated to this unit. Once these pilots had gained enough experience flying the He 162, they were to be used as base for forming the first operational unit, 1./JG 80. Immediately after the start of production, a large training process at the NSFK gliding school began. As there was only one He 162 S glider aircraft available, other simpler gliders (like the DFS SG 38 Schulgleiter) had to be used as a temporary solution. The training process did not go the way the Luftwaffe Officials hoped it would go. It was too slow and, when the first group of new pilots was tested on the Arado Ar 96B (trainer version), the results were disappointing. At this point, the plan to use Hitlerjugend members as He 162 pilots was discarded, which was somewhat expected. The experiment with the young and inexperienced pilots proves that only the most experienced pilots could successfully fly the He 162. Beside pilot training, at the same time, the training of ground support staff was carried out at Fliegertechische-Schule 6 in Neumarkt and Wiedenberg.

In order to form the first operational combat unit with the He 162, an already-experienced unit would be needed. For this purpose, Jagdgeschwader 1 “Oseau” (JG 1) was chosen. It was commanded by Oberst Herbert Ihlefeld and it was equipped mostly with Fw 190 aircraft. On 8th February, 1945, the first orders were given by General der Jagdflieger (General of Fighters) Oberst Gordon Gollob to the 2nd and 3rd Staffels (first Gruppe JG 1) commanders to prepare their pilots to be moved to the Parchim Airbase near Rostock. Once there, the first flight training with the new He 162 was to be carried out. In late February, a group of 10 pilots (from 2nd Staffel) was moved to Vienna for more training. For pilot training, two prototype aircraft were used, as the production of operational “A” variant was slow. Despite being experienced pilots, there were some accidents caused either by pilot errors or due to some mechanical faults. The He 162 M8 was lost due to engine failure on 12th March, but the pilot survived. Only two days later, one pilot was killed when he made a mistake during landing. As there were no other He 162 aircraft available, this group was forced to return to Parchim Airfield. In late March 1945, around 10 pilots of the I./JG 1 (first Gruppe) were moved to the Marienehe factory (near Rostock). They were supplied with a number of He 162 that where previously used by the mechanics and test pilots of this factory. Once the handover was completed, the group with the He 162 returned to its original base of operation.

The RLM’s next plan was to begin re-equipping II./JG 1 with the He 162 as soon as possible. The unit was moved to Rostock at the end of March 1945, where the training should have begun. Other units were expected to be formed (I and II./JG 400, III./JG 1, JG 27 and JG 77), but nothing came of this. In May 1945, a Volksstume Jagdeschwader (in essence, an improvised militia unit) was to be formed at the Sagan-Küpper airfield by using mostly volunteer pilots. However, Allied occupation of this airfield prevented the implementation of this proposal. The only unit beside JG 1 to be supplied (in limited numbers) with He 162 was I.EJG 2 (Ergänzungsjagdgeschwader, auxiliary fighter training unit), but these were probably never used operationally.

By the end of March, JG 1 was supplied with around 58 operational He 162A-2 aircraft with some 25 more on the way. At the same time, I./JG1 was moved to Ludwigslust, where it was supposed to be supplied with new He 162 aircraft. Due to the rapid Allied advance, the unit was moved in April to the Schleswig-Holstein region (Leck airfield), near the Danish border. This unit had orders to defend Berlin from Allied bombers coming from over the North Sea. The I./JG1 was to be ready for operational service by 20th April. The first combat loss happened on 19th April, when one He 162 was shot down after a take-off by an American P-47 Thunderbolt. By the end of April, II./JG 1 was moved quickly to the Leck airfield to join the first Gruppe.

He 162 side view [worldwarphotos.info]
The first operational combat mission of I./JG1 was to attack an RAF front airfield on 20th April. While on their way, the He 162’s were intercepted by a group of Hawker Tempests (3 Sqn. RAF). In this engagement, only one He 162 was shot down and the pilot managed to survive without any injuries. At the same time, one P-51 Mustang scout pilot (12th Tactical Reconnaissance Squadron) reported to have shot down one He 162, but this was never officially confirmed.

The He 162’s first allegedly air victory (and possibly the only one) was achieved by Lt. Rudolf Schmitt from I./JG 1, when he shot down a British fighter. However, this fighter was later claimed to have been shot down by German ground AA fire. While Lt. Rudolf Schmitt may not have made the first air victory, he did successfully manage to use the ejection seat in a combat zone. Due to the Allied advance, on 5th May, 1945, JG 1 received orders to stop any further action and to destroy all operational aircraft. For some reason, the order was later recalled. The Leck airfield would be captured by British forces on the 8th, which ended the He 162’s short operational combat story.

Precise information on the He 162’s combat or deployment is hard to find mostly due the chaotic state in Germany at that time. According to some authors, like Francus G., none were ever used in combat.

Japan’s military attache, in early 1945, was interested in acquiring the license production of the He 162. After a short negotiation, the Germans gave permission for license production. But there was a problem of how to transport or send the necessary documents and sketches from Germany to distant Japan. The only solution was to use radio by converting the sketches into numerical code. Unsurprisingly, this did not work well and only limited information was send before the end of the war in Europe. Due to this reason, Japan never received the complete He 162 sketches.

In Allied Hands

As the British forces captured Leck airfield, they acquired a number of fully operational He 162s. Some 11 planes were selected by the British Technical Intelligence Team to be transported to the UK. Once there, all were sent to the Farnborough airfield, which was the headquarters of the Royal Aircraft Establishment (RAE). The He 162 aircraft were thoroughly examined and divided into groups either for part analysis or for flight testing. On 9th November, 1945, while flying an He 162 (AM61) at the Exhibition of German Aircraft at Farnborough, the pilot Robert A.M. lost his life in an accident.

One of the tested He 162 (marked AM 59 by the British) would be donated to the Canadian Museum in Ottawa together with another one received later that year. Later, two were given to British museums, one to the Imperial War Museum and the second to the RAF Hendon Museum. One would be given to France, possibly either AM 63 or AM 66.

The British also supplied the American with some He 162 captured at the Leck airfield. The Americans also managed to capture some abandoned He 162s across Germany. Some would be tested at the Wright and Freeman Field research centre. One He 162 was even kept in good flight condition up to 1946. This aircraft is today privately owned by the Planes of Fame Museum in California.

The French received or captured (it is not known precisely) five He 162, of which two were airworthy. These two were tested, but one was damaged during landing and the second was lost in May 1948 with the loss of the pilot’s life. One He 162 is preserved and can be seen at the Paris Aviation Museum.

During their advance through Germany, the Soviets managed to capture about seven planes, two of which were airworthy. These would be tested and and analyzed in great details. As the Soviets lacked any advanced jet technology at that time, adopting German captured technology looked like a logical step. Most interesting for the Soviets were the Jumo 004 and the BMW 003 jet engines that would be, in later years, copied and produced in some numbers. There were also some consideration from the Soviet military to copy and produce some of the German jet aircraft, including the He 162. One He 162, with the fuselage marking 02, was tested by the Soviet Flight Research Institute (near Moscow). The second, marked 01, was tested at the Central Aero-hydrodynamics Institute. He 162 02 would be flight tested on several flights in 1946. The results of these tests were disappointing for the Soviets and a decision was made not to further consider them for service, and they did not have any influence on the later Soviet aviation development.

Conclusion

The idea for the He 162 was born out of a mix of desperation, chaos and hope for some miraculous wonder weapons that could turn the air war’s tide to the German side again. It was designed to be cheap and built in great numbers. The impressive fact is that it was designed and built in only a few months, but, on the other hand, it was built in too small numbers, the engines used were often of poor quality and there was a lack of trained pilots, which, along with other problems, meant that the He 162 did not have any major impact on the war itself or on post war jet aircraft development. In the end, it was not the ‘Wunderwaffe’ that the designers hoped for, but it was still impressive, at least because of the speed with which it was designed and built.

Variants

As only a small number of He 162 were built, there were very few operational versions. Beside the prototype series, only the “A” version was built in some numbers.

Prototypes

  • He 162 V– Prototype series
  • He 162 A-0– Around 10 pre-production aircraft built used for testing

Main production version

  • He 162A-1 – Version equipped with two MK 108 cannons, a few were possibly built
  • He 162A-2 – The main production variant armed with two MG 151/20 cannons

Training versions

  • He 162S – Two seat glider trainer version, a few built
  • He 162 Doppelsitzer – Two seat powered trainer version, only one incomplete aircraft built

Experimental prototypes based on “A” versions

  • He 162A-3 – Proposed version armed with two MK 103 or 108 cannons
  • He 162A-6 – Proposed version with redesigned and longer fuselage armed with two MK 108 cannons
  • He 162A-8 – Version equipped with the Jumo 004D jet engine, only a few incomplete prototypes built
  • He 162A-9 – The A-9 was to be powered by one BMW 003R engine and supported by a second BMW 718 rocket engine. None built
  • He 162A Mistel 5 – Paper project, a combination of an He 162 and one Arado E 337 glide bomb.
  • He 162 “Behelfs-Aufklarer” – Proposed version to be built in limited numbers as reconnaissance planes. It was never implemented and remained a proposal only.

Note that the B, C and D designations were not official and are used in this article only for the sake of simplicity.

  • He 162B – Proposed version equipped with a pulsejet engine (similar to the V-1 flying bomb engine)
    • He 162B-1 – two engine version
    • He 162B-2 – single engine version
  • He 162C – Version with back swept wing, powered by Heinkel-Hirth 011A turbojet engine
  • He 162D – Version with forward swept wing designs powered by the same Heinkel-Hirth 011A turbojet engine

Operators

  • Nazi Germany – A few hundred built, but only small numbers were allocated to front units and saw limited combat action.
  • United Kingdom – Captured a number of operational He 162, 11 would be transported and tested in the UK.
  • United States – Received a small number of He 162 from the British but also captured some in Germany.
  • France – Received or captured at least five He 162 aircraft.
  • USSR – Captured seven completed He 162 which were tested after the war.
  • Japan – Military officials tried to acquire the license for production of the He 162 but the war’s end prevented this.

Specifications (Heinkel He 162 A-2)

Wingspan 23 ft 7 in / 7.2 m
Length 29 ft 8 in / 9.05 m
Height 8 ft 6 in / 2.6 m
Wing Area 38 ft² / 11.6 m²
Engine One BMW 003E-1 with 1,760 lbs/800 kg of thrust
Empty Weight 3,666 lbs / 1,663 kg
Maximum Takeoff Weight 5,324 lbs / 2,466 kg
Fuel Capacity 1,045 l
Maximum Speed at 6 km 560 mph / 840 km/h
Range 385 mi / 620 km
Maximum Service Ceiling 39,370 ft / 12,000 m
Climb speed 9.9 m/s
Crew One pilot
Armament Two 20 mm fixed forward firing cannons in the lower sides of the fuselage

Gallery

Illustrations by Ed Jackson artbyedo.com

Heinkel He 162 Volksjäger – 20222
Heinkel He 162 A-1 Volksjäger – 120235
Heinkel He 162 A-2 Volksjäger – 120077 “Nervenklau”
Heinkel He 162 A-2 Volksjäger – wearing Soviet colors as it undergoes testing after capture – Spring 1946

Credits

  • Duško N. (2008) Naoružanje Drugog Svetsko Rata-Nemačka, Tampopring S.C.G.
  • David M. (2006) The Hamlyn Concise Guide To Axis Aircraft Of World War II, Aerospace Publishing.
  • Alexander L. (2007). Waffentechnik Im Zweiten Weltkrieg, Parragon books
  • Francis C. (2006,2010) The Complete Guide To Fighters And Bombers Of The World, Anness Publishing
  • Richard S. and William C.(1967), The Heinkel He 162, George Falkner and Sons Ltd England,.
  • Balous M. and Bily M. (2004), Heinkel He 162 Spatz, MBI Bily.
  • Robert F.(2016) He 162 Volksjäger unit, Osprey Publishing.
  • Michael S. (2007) Attack and Interceptors Jets, Orange Books.

 

Messerschmitt Me 163S Habicht

Nazi flag Nazi Germany (1945)
Rocket Interceptor Trainer – 1 Built

A rear 3/4 view of the Soviet captured “White 94” Me 163S. Colorization by Michael Jucan [Yefim Gordon]
The Messerschmitt Me 163S (Schulflugzeug / Training Aircraft) Habicht (Hawk) was an unarmed two-seat training glider based off of the famous Messerschmitt Me 163 Komet. Originally designed for the purpose of training novice pilots for landing, the Habicht ultimately never saw active service with the Germans and only a single example was produced through the conversion of a serial Me 163B-1. With the sole example captured by the Russians after the war, the Habicht underwent extensive testing by the Soviet Air Force which helped them understand the flying characteristics of the Komet and prepared Soviet pilots for flying the powered Komets. The Habicht undoubtedly played a part in helping Soviet engineers understand the Komet and thus played a part in the future development of Soviet rocket aircraft.

History

A closeup view of the Me 163S showing the right wing. [Yefim Gordon]
The Messerschmitt Me 163 Komet was one of Nazi Germany’s most famous aircraft produced during the Second World War. Although bearing the title of the world’s first mass-produced rocket-powered interceptor, the Komet did have its fair share of flaws, such as the volatile and sometimes dangerous Walter HWK 109-509 rocket engine, which prevented it from becoming an effective weapon against the Allies.

As the Komet was designed to have a limited amount of fuel to engage Allied bombers, pilots were expected to glide the Komet back to friendly airfields once they disengaged from combat. With gliding landings as a potential problem for the less experienced pilots, one of the ideas proposed by Messerschmitt designers in 1944 was to introduce a dedicated trainer variant of the Komet which would have a student pilot accompanied by an instructor pilot. Designated as the Messerschmitt Me 163S (Schulflugzeug / Training Aircraft) Habicht, the trainer glider differed from the production model with the addition of an instructor’s cockpit behind the forward cockpit. This addition was accompanied by the removal of the Walter HWK 109-509 rocket engine and the Habicht would have to be towed by another aircraft in order to get airborne. Another interesting addition to the Habicht was a second liquid tank behind the instructor’s cockpit for counterbalancing. All the liquid tanks would be filled with water for weight simulation and ballast. A total of twelve examples were planned for production, but only one was produced due to wartime production constraints.

The sole example of the Habicht was built by converting an earlier Me 163B-1 production model. Due to the scarcity of information regarding the Me 163S, it is unknown exactly when the Habicht was produced and what sort of testing it may have undergone during German possession. However, it is known that the Soviet Union was able to capture the only example during the final stages of the World War II’s Eastern Front. The sole Habicht was sent to the Soviet Union along with three Me 163B Komets during the Summer of 1945 for thorough inspection and testing. In historian Yefim Gordon’s book “Soviet Rocket Fighters – Red Star Volume 30”, he claims that in addition to the three Komets, seven Habicht trainer models were also captured. This, however, remains quite dubious as there is no evidence that more than one Habicht existed, and all current photographic material, research materials, and books all suggest that only a single example was produced.

The Me 163S in simulated flight configuration aided by struts. [Yefim Gordon]
As the Soviets were particularly interested in rocket propulsion aircraft, the State Defence Committee issued a resolution which called for the thorough examination of the Walter 109-509 jet engine and the Me 163 Komet along with captured German documents on rocket propulsion. The three Me 163B Komets, of which only one was airworthy, and the Me 163S Habicht were sent to the Flight Research Institute (LII), the Valeriy P. Chkalov Soviet Air Force State Research Institute (GK NII VSS), and the Central Aerohydrodynamic Institute (TsAGI). The Habicht and Komets saw extensive testing in Soviet hands, undergoing several structural, static and wind tunnel tests. During the initial flight testing period, the Komet only flew as a glider as Soviet pilots and engineers were unsure of whether or not the Walter rocket engine was ready for use since bench tests were not completed. Securing the T-Stoff and C-Stoff propellants for the rocket engine was also a problem. In order to understand the handling characteristics of the Komet, the Habicht was flown numerous times at different altitudes, as was the unpowered Komet. A Tupolev Tu-2 bomber was responsible for towing the Habicht to these altitudes. Under Soviet ownership, the Habicht was given the nickname of “Карась” (Karas / Crucian Carp) due to the glider’s distinct silhouette. The test pilot responsible for flying the Habicht was Mark Lazarevich Gallaj. In general, the Habicht was considered relatively easy to handle by the Soviet test pilots. It is unknown how many test flights the Habicht underwent, but the aircraft certainly aided Soviet pilots in understanding the handling characteristics of the Komet. The Habicht’s service came to an end once the Soviet state trials of the Komet concluded. The sole example was scrapped sometime in 1946, along with seemingly all the other Komets.

If the Me 163S was able to be mass produced and flown with the Luftwaffe, the aircraft would have been a valuable tool to train German pilots. Landing the Komet was a problem for some pilots and in some cases resulted in fatalities but, with the use of the Habicht, the number of accidents would have certainly decreased.

Design

The Me 163S hung upside down in an unspecified TsAGI workshop for static testing. [Yefim Gordon]
The Messerschmitt Me 163S Habicht was a semi-monocoque aluminum based two-seat training glider developed off the standard tailless Messerschmitt Me 163B-1 Komet. The sole example was converted from a production Komet, which meant dramatic modifications had to be made to the aircraft. The Walther HWK 109-509 rocket engine was removed and in its place was a cockpit for an instructor. The fuel tanks in the airframe were all filled with water to simulate fuel weight while another water tank was added behind the instructor’s cockpit for ballast purposes. There was no armament fitted to the glider. There was a small transparent section between the student pilot’s cockpit and the instructor pilot’s cockpit, presumably for the purpose of communication. As there are no known German documents on the Habicht and Russian documents are scarce, not much is known on the other differences the Habicht may have had. Detailed specifications of the Habicht are unknown, but theoretically it should have been identical to the standard Me 163B-1 Komet except for possibly weight, air drag and center of gravity.

Operators

  • Nazi Germany – The intended operator and producer of the Me 163S Habicht.
  • Soviet Union – The main operator of the Me 163S Habicht. A single Habicht was captured and tested by the Soviets after the war. The Habicht was scrapped in 1946.

*Editor’s note: As noted above, the exact specifications of the Me 163S Habicht are unknown. However they are presumed to be similar to that of the Me 163B-1 Komet.

Gallery

Illustrations by Haryo Panji https://www.deviantart.com/haryopanji

Me 163S Habicht “White 94” in Russian Service [Haryo Panji]
Me 163S Habicht in German Service [Haryo Panji]
 

 

Now known as the “White 94”, the Me 163S sits idly by. [Yefim Gordon]
A closeup view of the Me 163S showing the transparent section between the two cockpits. [Yefim Gordon]
The Me 163S in simulated flight configuration aided by struts. [Yefim Gordon]
A top down view of the “White 94” Me 163S. [Yefim Gordon]
A photo of the “White 94” Me 163S in flight being towed by a presumed Tupolev Tu-2. The pilot in the photo is likely Mark L. Gallaj. [Yefim Gordon]
The Me 163S inside TsAGI’s T-101 wind tunnel for testing. The struts support the Habicht and simulate its flight configuration. [Yefim Gordon]
An alternate closeup view of the Me 163S during static tests. [Yefim Gordon]

Yet another inverted static test, but this time the tail wheel strut and tire were removed from the Me 163S. [Yefim Gordon]

Sources

Akaflieg Berlin B9

Nazi flag Nazi Germany (1942)
Experimental Aircraft – 1 Prototype Built

Three-quarters view of the B9, note the large glazed cockpit. Colorized by Michael Jucan [airwar.ru]
The Akaflieg Berlin B9 was a German experimental twin engine aircraft designed with the pilot placed in the prone position.  It was designed to withstand extremely high g-forces. One prototype was built and tested by a glider production workshop in 1943 but it would not be adopted for mass production. The author would like to especially thank Carsten Karge from the Archiv Akaflieg Berlin for providing information on this generally unknown aircraft.

Why prone position?

During sharp up and down turns while flying an aircraft, strong g-forces appear that act on the pilot, potentially leading to loss of consciousness. Under normal flying conditions, the g-forces that appear are relatively harmless. The first effect of the g-force which the pilot notices is the difficulty of moving his body normally, as normal movements feel much heavier. Another effect of strong g-forces, which is much more dangerous, is the loss of oxygen flow to the brain. In some cases, the flow of oxygen and blood to the human brain can be greatly diminished, which can lead to the pilot losing consciousness momentarily. This effect lasts a short time, but it is enough for the pilot to lose control of the plane with a potentially fatal outcome.

While today, devices such as advanced anti-g suits help the pilot withstand strong g-forces, during the World War Two, other solutions had to be found. The Germans had noticed that, especially during sharp dive bombing actions, the pilots often lost consciousness. One way to tackle this was to put the pilot into a prone position, which in essence means to fly the plane while lying on the belly. In this position, the pilot has both his heart and his brain at the same level, which means that blood is no longer stopped from travelling to the brain during high-g maneuvers. Thus, this flying position allows the pilot to endure much greater g-forces than he would normally be able to if he would be in an ordinary sitting position. Other advantages of the prone position are the reduced aircraft size, smaller fuselage, less drag due to the smaller cockpit, and it would be easier for the pilot to operate the plane when conducting bomb sighting and ground attack, among other advantages.

During the war, the Germans would test several such aircraft designs, sush as the Henschel Hs 132 or B9, mostly for the ground attack role. Beside a few prototypes built, none were ever used operationally.

History

The SF 17 prone glider was the forerunner of the B9 powered aircraft [Akaflieg Stuttgart]
In order to test the idea of an aircraft with the pilot in the prone-position, the Aero-Technical Group (Flugtechnische Fachgruppe/FFG) of Stuttgart designed and later built the FS 17 all-wood test glider. It was especially designed to withstand forces up to 14 G. It made its first test flight on 21st March, 1938. In the spring of 1939, FFG Stuttgart made the first design drawings and calculations for a prone-piloted aircraft. This aircraft was to be powered by two Hirth HM 50 engines with an estimated speed of 250 mph (400 km/h).

FFG Stuttgart never completed this project as it was forced, for unknown but likely politicaly reasons, to hand over the project to Akaflieg (Akademische Fliegergruppe/Academic Aviator Group) Berlin. It is possible the order came from the German Experimental Department for Aerospace (Deutsche Versuchanstalt für Luftfahrt e.V. Berlin-Aldershof) DVL or even from the Ministry of Aviation (RLM – Reichsluftfahrtministerium), but precise information is lacking. Akaflieg Berlin, founded in 1920, was one of the oldest gliding clubs in Germany and it still exists today.

The RLM designation for this aircraft was “8-341” but Akaflieg used the simpler B9 designation. The technical characteristics that the new plane was supposed to have were a good field-of-view for the pilot in the prone position, a high degree of safety for the pilot, a high speed during diving, good general flying characteristics and being able to withstand forces of up to 25 G, or 22 G depending on the sources.

Akaflieg Berlin had a small number of engineers and workers and an adequately equipped workshop to complete the task given. For this purpose, a design team was formed with Theodor Goedicke, Leo Schmidt and Martin G. Winter, which was responsible for the creation of this new aircraft design. The first prototype was to be ready by August 1942 but this was never achieved, and the prototype was only completed in early 1943. It made its first test flight on the 10th April, 1943 at the Schönefeld airfield, near Berlin.

The Design

Front view of the B9 [airwar]
The B9 was a single-seat, low wing, mixed construction aircraft with the pilot in prone position. It consisted of a metal airframe, made of steel ribs, covered with wood and canvas. The main fuselage’s cross-section was trapezoidal shaped. As the B9 was specifically designed to withstand forces of up to 25 G, it had to have a strong fuselage.

The wings were made of wood covered with duralumin sheets. In order for the wooden wings to withstand the strong torsional forces which occur during high acceleration maneuvers, the spaces between the spars were heavily reinforced. The middle part of the wings viewed from above have a square shape and then narrow towards the wing tips. The wings were held in place by four bolts on each side. The rear tail design was a simple one, with standard rudder and elevators.

The B9 had a standard retractable landing gear copied from the Me-108, which consisted of two larger wheels and one smaller non-retractable wheel at the back. The landing gear was lowered and raised manually. The front wheels retracted into the engine nacelles, but they were not fully enclosed.

The B9 had a large 4.9 ft (1.5 m) long glazed cockpit with good all-around view. But, as the pilot was in a prone position, the above and the rear views were limited by the human body’s inability to turn the head in these directions. The glazed cockpit was made of two parts, the front windshield and the rear larger canopy that opened to the right side. The cockpit interior had to be especially designed for a pilot lying in the prone position. The usual flight controls were almost useless in this situation and, thus, certain changes were necessary. It was important to divide the controls on both sides of the cockpit, in order to avoid the pilot crossing hands, which could lead to complications in flight. On the right side were the controls for ailerons and elevation. The pilot would use his right hand to gain access to the harness and the canopy release mechanism. For controlling the rudders and brakes, the pilot would use his feet. Using his left hand, he would operate the remaining instruments, the throttles, flaps, ignition switches, emergency pump, fire warning, undercarriage control and others. Additional engine and flight instruments were located behind the pilot. These included, among others, the distance indicator, climb indicator, compass, oil and fuel pressure gauges and airspeed indicator. For the pilot to be able to see them, a small mirror was provided. There were also inclined and horizontal line markers on the inner windshield to help the pilot with orientation. For flying at high altitude, an oxygen supply system with a mask was provided to the pilot.

The aircraft was powered by two Hirt HM 500 air-cooled engines, with 105 hp each. The maximum speed was around 140 mph (225 km/h) but, according to some sources, it was as high as 155 mph (250 km/h). The four fuel tanks, with a total capacity of 25 gallons (95 l), were located between the spars on both engine sides. The B9’s effective operational range was 250 mi (400 km). Originally, the B9 was meant to be equipped with two variable-pitch propellers, but it was instead fitted with ordinary wooden fixed pitch propellers made by the Schäfer company.

As the B9 could be used as a ground attack aircraft, a bomb rack was meant to be installed, but it is not clear if this was ever implemented.

Operational Testing

The B9 in flight [airwar]
The operational prototype was ready by the summer of 1943. The first test flights were carried out by Ing. L. Schmidt and Dipl.-lng. E. G. Friedrichs. On one flight, L. Schmidt had an accident, the details of which are not known, but the plane probably suffered only minor damage.

The B9 was meant to make a series of test flights in order to ascertain if the prone position design had any merit and to test the general flying and overall structural performance. If these proved to be successful, the B9 would serve as base for future development and be put into active service. The B9 aircraft received the ”D-ECAY” marking, which was painted on both sides of the fuselage.

The tests were carried out from July to October 1943, during which time around thirty pilots had the opportunity to fly it. The test flights were conducted without any major problems and only one accident was recorded. This accident was caused not by any mechanical problems, but by a pilot mistake during takeoff. The B9 was damaged, but it was repaired and put back into service in only a few weeks.

The pilots did not have many objections to flying in the new prone position. They described it as comfortable and that it was relatively easy to adapt to the new commands. There were some issues, like fatigue and tiredness of the neck and shoulder muscles because of the constant moving of the upper arms. There were also some complaints about the chin supporter, which was deemed as unpleasant during flight but it was essential during high g-force maneuvers. During these test flights, the control panel and the controls did receive some changes in design. The large and fully glazed cockpit provided the pilot with good front and below fields of view, while the rear and upward view was somewhat problematic due to the prone position.

These tests showed that this type of aircraft was well suited for bomber, ground attack, high speed reconnaissance and possibly even in a high-speed fighter role. But it was also noticed that, due to the somewhat restricted view, the use of low speed prone pilot aircraft without air support was not recommended. Despite being designed to withstand forces of up to 25 G, the maximum achieved was only 8.5 G. One of the reasons for this was the use of low rotational speed propellers.

For 1944 and 1945 unfortunately, there is no information about the B9’s operational use. The B9 was found abandoned at the Johannisthal airfield near Berlin after the war. In what condition it was by the time of capture is not known. What is unusual is that the B9 was captured by the Americans and not the Soviets (according to author Hans J.W.). What the Americans did with the plane is unknown to this day, but it was most likely scrapped.

Only one B9 plane prototype was ever built. By 1943 and 44, a large amount of resources were invested in the production of fighters for the defense of the Reich and there were neither the time nor the resources needed to develop and test such an aircraft.

Akaflieg Berlin B9 Specifications

Wingspan 30 ft 10 in / 9.4 m
Length 19 ft 8 in / 6 m
Height 7 ft 7 in / 2.3 m
Wing Area 128 sq ft / 11.9 m²
Engine Two Hirt HM 500 engines, with 105 hp each
Empty Weight 2,207 lbs / 940 kg
Maximum Takeoff Weight 2,458 lbs / 1,115 kg
Fuel Capacity 95 l
Maximum Speed 140 mph / 225 km/h
Range 250 mi / 400 km
Maximum Service Ceiling 13,000 ft / 4.000 m
Climb to 13,125 ft / 4,000 m 4 minutes and 12 seconds
Crew One pilot
Armament None

Gallery

Illustrations by Haryo Panji https://www.deviantart.com/haryopanji

 

Akaflieg Berlin B9 – Prototype [Haryo Panji]
B9 drawings [airwar]

Sources