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ABSTRACT

The Rey-Osterrieth Complex Figure Test (ROCF) is among the
most widely used neuropsychological examinations to analyze vi-
sual spatial constructional ability and memory skills, but grading the
patient’s sketched complex figure is subjective in nature and can be
time consuming. With increasing demand for tools to help detect
cognitive decline, there is a need to leverage sketch recognition
research to assist in detecting fine details within an ROCF’s inher-
ently abstract figure. We present a series of recognition algorithms
to detect all 18 official ROCF details using a top-down sub-shape
recognition approach. This automated grader transforms a sketch
into an undirected graph, identifies and isolates detail sub-shapes,
and validates sub-shape neatness via a point-density matrix template
matcher. Experimental results from hand-drawn ROCFs confirm
that our approach can automatically grade ROCF Tests on the same
18-item sketch detail checklist used by neuropsychologists with
marginal error margin.

Index Terms: Applied computing—Health Care information sys-
tems; Human-centered computing—Gestural input; Human-centered
computing—Mobile devices

1 INTRODUCTION

1.1 Rey-Osterrieth Complex Figures

The Rey-Osterrieth Complex Figure Test (ROCF), developed by
Rey [41] in 1941 and refined by Osterrieth [37] in 1944, is a neu-
ropsychological test that evaluates several cognitive functions in-
cluding visuospatial abilities, memory, attention, planning, working
memory and executive functions [28, 46]. The ROCF is character-
ized as a complex cognitive task [45], and is known in the field of
neuropsychology as a useful metric for the frontal lobe function [44].
A participant is asked to copy the figure into a piece of paper, then
copy it again two more times from memory. The shape is specifi-
cally designed to be abstract so that participants cannot associate
it with any common object or concept. A clinician then grades
all three sketches on whether 18 separate sub-shapes (henceforth
called “details”) exist and, if they do, how neatly they were drawn.
A clinician grants up to 2 points for each detail that totals to 36
points, with partial credit given to distorted or misplaced shapes.
Points for overall neatness of individual details is subjective and is
generally dependant on an expert’s intuition, especially for shapes
that exist but might be drawn poorly. This results in different ROCF
graders potentially producing two different scores. The prolifera-
tion of digital sketch recognition techniques and a push to digitize
clinical neuropsychological examinations motivated our creation of
an automated ROCF that can grade itself on the existing grading
scheme.

From a digital sketch recognition standpoint, automatically grad-
ing an ROCF is non-trivial due to the complexity of the figure and
test conditions resulting in inherently fuzzy sketch data. No two
completed sketches are drawn in the same order, and very frequently
shapes are drawn using portions from other shapes [13]. Bottom-up
approaches tend to classify shapes as soon as their constraints are
met, but shapes in an ROCF may in fact be only part of a detail
or may end up as a portion of an entirely different one. A top-
down approach not only more closely resembles a human grading an
ROCF, but it also simplifies the recognition process by not needing

Figure 1: Our automated grader highlighting Details 2, 3, and 6 in red,
green, and blue respectively.

to re-classify a shape at every step of the hierarchical recognition
process.

1.2 Contribution

Significant research has been produced in analyzing the reliability of
current rubrics [17, 32, 33, 48]. Automating the process started over
two decades ago [13], but even recently surveys have cited a lack
of contributions towards grading all 18 details at once. Moetsum
et al. in research published in 2020 [34] specifies that “due to the
unconstrained nature, these drawings, localization and segmentation
of individual scoring sections become a highly challenging task”
and existing work localizes only a “small subset of ROCF scoring
sections”.

Whereas previous efforts in automatically grading the ROCF can
identify only a subset of the complex figure’s details, we present
the first fully automated ROCF grader that does not require user
input to point to baseline shapes from which to begin recognition.
Our contribution widely expands on Field’s truss recognition tech-
nique field:2011:mechanix by introducing several graph traversal
algorithms in order to isolate specific sub-shapes or regions from
a given sketch. In addition to triangles, we also recognize squares,
parallel lines, crosses, straight horizontal and vertical lines, and
diamonds as well as shapes specific to the ROCF such as detail 6
(Cross with Square), detail 14 (Circle and 3 Dots), and 18 (Square
with Line). Our system uses a multi-step recognition process that
can identify shapes whether by crawling the resulting graph, by us-
ing template-matching shape recognition, or a combination of both,
resulting in a more accurate and robust sub-shape recognition sys-
tem for ROCF grading. Many of our recognition algorithms utilize
well-known graph traversal and optimization algorithms (such as Di-
jkstra’s Shortest Path [15] and Depth-First Search [47]). Our system
represents the first fully-automated ROCF grader that recognizes the
existence or absence of each of the 18 details and checks individual
shapes for distortion.

To test our recognizer’s performance, the system graded 141
digitized Rey-Osterrieth tests from participants and we compare
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Figure 2: A Rey-Osterrieth Complex Figure Test, with all 18 Details
listed.

how closely our system’s grades correlate with those of two expert
graders. The experimental results demonstrates the proposed ap-
proach is successful in identifying the existence of sub-shapes within
a large abstract shape.

2 RELATED WORK

2.1 Sketch Recognition Systems
Digital sketch recognition techniques favor bottom-up approaches
that employ computational geometry to classify shapes [9,11,22,27,
42]. Hierarchical sketch recognition systems such as LADDER [21],
Sketchread [3], Chemink [38] and Mechanix [18, 18] generate com-
posite figures by re-classifying shapes into more complex shapes
in every step of the sketching process. In early bottom-up sketch-
ing approaches “steps” were typically separated by a UI button
that explicitly instructed the system to create a recognition step.
More modern systems, however, automatically separate “steps” by
single-stroke actions and usually triggered when the user lifts their
pen. This allows the system to continuously check the sketch to see
whether the user is drawing a composite sketch made up of shape
primitives.

Popular applications for bottom-up recognition of composite
shapes using geometric primitives is especially popular in digi-
tal recognition of hand-drawn diagrams [1, 2, 6, 8, 10, 26, 53]. In
these projects researchers seek to digitize hand-drawn flowchart
and system design diagrams, interpreting diagram structure, flow of
information, and preservation of variable and state checks through
digital sketch recognition techniques [2, 26]. Circles, rectangles,
diamonds, rhombi, and directional arrows [9] are used in diagrams
to denote specific system or algorithm states or commands [1, 6].
Indeed, these projects originally served as the basis of Auto ReyO’s
recognition due to the emphasis in recognizing primitives as part of
a larger composite system of shapes. However, a chief difference
between these projects and an ROCF sketch is that the ROCF by
design has a large number of overlapping shapes, and specific details
can be as granular as a single line within a specific area of other
shapes. Diagrams and flowcharts, by contrast, are required to have
clear spacing between its components and recognizing missing or
distorted shapes is not a focus of these automated systems. While
some form of composite figure recognition is necessary for automat-
ically grading the ROCF, a top-down approach as explored in other
systems [23] proved ultimately the most viable for Auto ReyO.

Corner detection also helps characterize digital shapes, with
lightweight systems such as ShortStraw [55] and iStraw [56] be-
ing among the most efficient. Auto ReyO uses the open-source
ShortStraw library in its recognition of corners and endpoints to
generate the vertices during the graph creation stage. This is used in

Figure 3: Auto ReyO’s recognition hierarchy, designed to have as few
dependencies as possible.

tandem with line-intersection algorithms to segment the sketch lines
such that individual shapes can be recognized. A frequent use case
of this is recognizing details 4 and 6 of the ROCF (see Fig. 2). A user
typically draws a single long line at once across the ROCF shape,
so we are unable to use individual stroke order to recognize details,
but rather need the segmentation that a line-intersection algorithm
combined with ShortStraw is able to provide.

2.2 Template Matching Shape Classification Systems

The “Dollar” family of recognition systems [4, 5, 50, 51, 54] remains
among the most well known single and multi-stroke gesture clas-
sification algorithms, and serve as the basis for our own template-
matching recognition algorithm presented as part of our system.
While most techniques rely on stroke order, geometric properties,
and physical characteristics such as speed, acceleration, etc., the
“$P+” recognizer calculates similarity via ”point cloud” approxima-
tion [49]. A point cloud is generated by resampling both a template
shape and an input shape on the same resampling parameters, over-
laying the input shape on top of the template sketch matching its
shape, centering, and orientation as close as possible, and iterat-
ing through every point finding the closest match between template
points and input points. The distance between the points that are
closest together are added cumulatively and are presented as the
overall “distance” metric between the template shape and the input
shape. The “$P+” recognizer returns the closest template match,
identifying what kind of shape the user has drawn. This is especially
flexible when the application in question necessitates recognition
that is agnostic to stroke order. Our technique for shape recogni-
tion as described in Section 3.4 is based on the “$P+” recognizer,
particularly the technique of calculating a “distance”.

Our technique differs, however, in that rather than calculating dis-
tance via point-for-point comparison, we generate a fixed-resolution
matrix of point density for both the template and the input shapes
and calculate distance between cells of both matrices. This allows
us to generate a more accurate grader for shape neatness. Indeed,
“$P+” only focuses on finding the closest match to a template since
it is a shape classifier, but its internal distance metric value does not
perform well to gauge whether an input shape is poorly drawn next
to its provided “ideal” template shape.

2.3 Hierarchical Sketch Recognition

Hierarchical sketch recognition approaches generally check drawn
lines to see if they meet requirements for a composite shape [29, 31].
Layered hierarchical systems for graph creation have been applied to
both bottom-up and top-down systems [23], and involve the decom-
position of a drawn sketch to specific broad categories by analyzing
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Figure 4: Description of ROCF sub-shape recognition system. Stages 2 and 3 shown in the figure are repeated for each of the 18 details of a
Rey-Osterrieth complex figure.

sub-graphs [14, 30, 57]. This is typically used in the fields of com-
puter vision to help decompose a system to primitive parts and
represent them as a tiered graph. We envisioned a similar hierarchi-
cal tiered approach to the recognition of an ROCF due to the nature
of the drawn details. To draw detail 10 in an ROCF, for example, the
user needs to have drawn both details 2 and 3 to be able to connect
the line properly (see Figure 2). Similarly, detail 14 requires the
existence of detail 13 to receive full marks for both correct place-
ment and shape neatness. Rather than represent the entirety of the
sub-shape as a single vertex in a graph, however, we envisioned
the vertices of a graph being represented by intersecting lines and
endpoints, and applied the concepts behind sub-graph composite
object recognition to identify the ROCF details themselves. The
cited foundational work on graph implementations to supplement
computer vision and object recognition informed our own approach
to automatically grade ROCFs using a graph itself as the vehicle for
tiered object recognition.

2.4 Efforts to Automate Neuropsychological Examina-
tion Analysis

Efforts to automate other neuropsychological tests has renewed inter-
est in sketch sub-object detection [7, 16, 35, 36]. Object recognition
ranges across various neuropsychological examinations including
clocks [24, 25] and general handwriting tasks [20, 39]. However,
whereas recognized objects for these tests tend to have heavily dis-
tinct characteristics, ROCF details are mostly composed of simple
primitives that appear frequently. For example, detail 5 shown in
Figure 2 is defined not only as any vertical line, but rather a specific
vertical line within the sketch. Work presented by Prange et al. [40]
cites Rey-Osterrieth figures as a motivating factor in the need to
identify geometric shapes inside complex abstract figures. Existing
attempts to automatically grade ROCFs are semi-automated or do
not implement detection of all 18 details [12, 13]. The most recent
attempt automates grading using a deep-learning neural network but

Figure 5: Finding path p for the top horizontal side of detail 2’s rect-
angle. Dotted area on right indicates dist radius. In this example
vm2 = c1, dir = Right and nextdir = Down (See Algorithms 1 and 2)

leaves ample room for improvement of individual segment detection,
most notably single-line details [52]. Additionally, our system is
able to produce a recognizer from only five training sketches to serve
as templates, whereas neural networks require exponentially higher
amounts of training data to function properly.

3 AUTOMATED REY-OSTERRIETH COMPLEX FIGURE TEST
GRADER (AUTO REY-O)

Auto Rey-O is an application written on the Universal Windows
Platform (UWP) that connects to a Neo SmartPen device via blue-
tooth for data collection. The same app is used to perform the fully
automated grading process. Auto Rey-O’s top-down sub-shape rec-
ognizer divides the ROCF grading process into three distinct stages
as shown in Figure 4.

3.1 Recognizer Generalizability
An important consideration of novel recognition and automation
techniques in sketch recognition lies in articulating the generalizabil-
ity and defining the constraints under which a presented technique
aims to perform well.
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Automating the ROCF motivates a brief discussion on generaliz-
ability due to the inherently ”hard-coded” nature of its automation.
Indeed, the complexity of the ROCF shape coupled with the re-
quirements of detecting very specific lines necessitates a certain
specificity of location and shape composition requirements. Some
details, for example, are a single horizontal or vertical line, but of
most importance is the location of the line relative to other details
and the starting and stopping points. It is, in fact, this specificity
in requirements that allows our method to recognize all 18 details,
opposing previous work that only detects a subset of them.

At the same time, however, generalizability was taken into ac-
count when designing the recognizers that will be described in the
following section. Generalizability was considered for two primary
reasons. Firstly, our algorithm must be generalizable to recognize de-
tails despite a varying list of imperfections including but not limited
to: crooked lines, shapes not entirely closed, various lines intersect-
ing at different points, sharp angles accidentally being curved, the
same line being drawn over several times, etc. The algorithm must
also be able to, within reason, identify as many shapes as possible
even in the absence of other shapes. Unless the shapes are directly
dependent on each other for recognition, the absence or heavy dis-
tortion of one unrelated detail should not prevent the recognition of
the other.

Secondly, as many recognition techniques as possible should be
easily adaptable for other complex figure tests. As per the Com-
pendium of Neuropsychological Examinations [46], seven complex
figures are recognized as valid and tested figures for this purpose,
and the Rey-Osterrieth Complex Figure test is the most popular.
New variants with small changes are uncommon. The remaining
six figures are: Taylor Alternate Version, Modified Taylor Complex
Figure, and four Medical College of Georgia Complex Figures. All
have similar size, complexity, and are a combination of straight lines,
triangles, and simple geometric shapes. All contain a “detail 2”: a
large rectangle that serves as an anchor for the rest of the shapes.
Our system was designed to be adaptable to recognize the 18 details
of the remaining six complex figure tests by applying variations
on the pathfinding algorithms on Table 1. Our three-stage method
detailed in Fig. 3 can be adapted for all six remaining complex figure
tests, so that extent we consider this approach generalizable for other
complex figure tests of this type. Location heuristics need to be
tailored for each detail, since the rules themselves are inherently
specific and unique to the ROCF. We believe our three-step approach
can be usable for any hierarchical sketch recognition problem involv-
ing complex figures where multiple sub-shapes must be discretely
recognized but may share any number of lines.

3.2 Stage 1: Graph Creation
The graph creation stage is divided into four distinct steps. First, we
prepare the sketch for corner detection by resampling to a uniform
interspace length S as follows:

S =

√
(xm − xn)2 +(ym − yn)2

c
(1)

where (xm,ym) is the lower-right corner of the sketch, (xn,yn) is the
upper-left corner of the sketch, and c is a constant c = 40.

The second step utilizes the corner-finding algorithm from
Wolin [55] to identify any “corner” from drawn strokes. To de-
tect line intersections, two straight-line segments are compared with
the target segment ya = a2x+ a1 checked for intersection against
comparison segment yb = b2x+b1 with equation 2.

a1 +b1

a2 +b2
∈

(
x1 −

(0.15l)2

1+a2
2
,xn +

(0.15l)2

1+a2
2

)
(2)

where x1 and xn represent the x values of the less and greater

vertices of the target segment respectively with l being its segment
length.

The third step creates undirected graph G, where every vertex v is
a line endpoint, corner, or intersection, and every edge e is a drawn
line connecting each v. Each v contains a point from the sketch, and
each e contains the sampled points that connect the two vertices.

The fourth and final step performs vertex contraction on the cre-
ated graph. Each vertex is iterated over and checked for near vertices
that fall below a predetermined distance threshold. If two vertices are
joined, their respective sampled points si including points from an
edge that might fall between them are combined into a single vertex
v containing all the sampled points. The distance measure is de-
termined through complete distance used in hierarchical clustering,
taking the maximum of the set in equation 3.

{||si − s j||2 | si ∈ v1,s j ∈ v2 } (3)

This serves both to connect segmented or near vertices and to
reduce the overall complexity of the graph by eliminating edges.
Finally, the vertices are iterated over a second time, checking if
near vertices fall below a distance threshold, where the distance is
determined through taking the minimum of the set in equation 3
referred to as single distance used in hierarchical clustering. If the
distance falls below a predetermined threshold, the points are then
are linked through an edge.

Algorithm 1 Detail 2: Largest Rectangle
Input: Sketch Graph’s vertex adjacency list
Output: Largest rectangle vertices

1: for all node n in Graph do
2: corner c1=SideAndCorner(n,Right,Down)
3: corner c2=SideAndCorner(c1,Down,Le f t)
4: corner c3=SideAndCorner(c2,Le f t,U p)
5: corner c4=SideAndCorner(c3,U p,Right)
6: if n = c4 then
7: add all SideAndCorner b sides to rectangle q
8: end if
9: end for

10: return largest q

3.3 Stage 2: Detail Recognition
All 18 ROCF details are recognized by applying a graph traversal
algorithm to identify a “shape” within the graph. Each detail has an
associated algorithm that is called in the hierarchical order defined
by Figure 3. Every algorithm is designed to accommodate inherent
graph imperfections from both the graph creation stage and the
participant’s hand sketch. For example, if the algorithm checks for a
horizontal edge, there we allow a slope between 0.3 and -0.3 since
participants are not expected to produce a perfectly horizontal line.

Every algorithm was designed to strike a balance between le-
niency to accommodate the imperfect nature of a hand-drawn shape
and precision to find the expected shape if it exists. We are unable
to thoroughly explain every detail’s graph traversal algorithm, but
we have chosen to explain detail 2 as Algorithms 2 and 1 since it
is the most sophisticated of our recognizers and best illustrates our
graph traversal approach.

3.3.1 Recognizing Detail 2
detail 2’s recognition algorithm defined in Algorithm 1 and 2 is
a greedy graph traversal algorithm tasked with finding the large
rectangle that serves as the anchor for all other shapes in the graph.
Our pathfinder finds one rectangle side b and the corner at its end
c at a time. For each side dir is the intended path direction, and
dirnext is the next path direction once we find our corner.
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We define N as single agents where every agent n ∈ N has a start
location sn ∈ G and a goal location gn ∈ G. The path p of n consists
of one side b of our rectangle where gn = c. Path p is of length k
that is a sequence of vertices p = {v0,v1,v2, ...,vk} such that each
consecutive vertex is either in a defined direction dir (up, down, left,
right, or diagonals) or Eucledian distance r < 25. At the end of our
sequence vk one of two conditions is true:

1. vk is connected to a vertex vx such that direction of (vk,vx) =
dirnext

2. vk is connected to other vertices vm such that r of (vk,vx)< 25.

The conditions describe that we have either (1) found a corner char-
acterized by the start of the next side of the rectangle, or (2) the end
of our sequence consists of various vertices very close together. This
creates a set of “dead-end” nodes Q. For condition 1, vk ∈ Q and
c = vk. For any vm that satisifes condition 2, {vm1,vm2, ...,vmn} ∈ Q.
We check all vertices in Q and return the vertex ve that satisfies
condition 1. The final sequence is p = {v0,v1,v2, ...,ve}, and c = ve.
This is repeated four times to find the four sides of our rectangle,
and return the largest such rectangle as detail 2.

3.3.2 Examples of Other Details
The rest of our graph traversal algorithms can be divided into two
distinct categories: graph-crawling algorithms that identify shapes
from the graph itself, and algorithms that use vertices as boundaries
and then isolates all pen strokes within a specified region.

Algorithm 2 SideAndCorner
Input: Start node n, directions dir, dirnext
Output: Side d of rectangle, corner c

1: push n to stack s
2: while s not empty do
3: pop s to p, mark as visited
4: for all adjacent pairs (p1,p2) of p do
5: if direction of (p1, p2) = dir or distance e (p1,p2)<25

then
6: push p2 to s
7: p=p2, repeat from line 5
8: end if
9: if dead end pn reached then

10: add shortest path as a stack from p to pn to set c
11: end if
12: end for
13: end while
14: for all current longest path a in c do
15: for all adjacency pairs (pa1,pa2) of leaf pan in a do
16: if pa2 is dirnext of pa1 then
17: return c = pa1, d = a
18: else
19: pop pan from a
20: repeat from line 15
21: end if
22: end for
23: end for

The former category is best for detail 2 as described previously,
as well as simple shapes and lines like details 3, 4, 5, 7, 9, 10, 15, 16.
The latter category is appropriate in cases when our graph generator
may create highly variable graphs from imperfectly-drawn shapes,
making it difficult for us to determine what the graph may look like.
This is the case for details 1, 6, 11, 12, 14, and 17. In these instances
we identify specific regions where we expect the detail to exist, and
save all edges that are found. We isolate specific regions and run
a bounded Depth-First-Search algorithm that returns all edges and
vertices within the given region.

Figure 6: Comparing two point-density matrices to asses detail distor-
tion: our sample, and a saved template. The process is repeated for
all templates.

Det. Method of Recognition

1 Isolate region, then DFS to fill
2 Greedy pathfinding, repeated per side
3 Dijkstra’s between diagonal corners of #2
4 Greedy single-direction pathfinding
5 Greedy single-direction pathfinding
6 Direction path for top/bottom, Dijkstra’s
7 Greedy single-direction pathfinding
8 Connect horizontal lines bet. #3 and #5
9 Find vertical, diagonal line above #2
10 Greedy single-direction pathfinding
11 Isolate triangle, then DFS to fill
12 Isolate lower-right region, DFS
13 Find upward, downward diagonals
14 DFS to find all edges on tip of 13
15 Greedy single-direction pathfinding
16 Greedy single-direction pathfinding
17 Isolate region, then DFS to fill
18 #2’s technique, then single diagonal

Table 1: General recognition method types for all 18 details. DFS is
the Depth-First Search pathfinding algorithm. Dijkstra’s is the Dijkstra
Shortest-Path Algorithm

For detail 6, for example, our “region” is defined by the area
inside the detail 2 rectangle and detail 3 cross, and we do not include
the detail 4 horizontal line or detail 7 Small Segment in our DFS
search. This returns the remaining subset of vertices and edges as
seen in bottom portion of Figure 4. Table 1 describes the general
method of recognition we applied to detect all 18 details in an ROCF,
and the order of recognition is tiered as shown in Fig. 3.

The “region finding” category allows us to isolate some details,
but if the shape is poorly drawn or missing entirely then isolating
regions alone could not confirm shape neatness. This motivated
the implementation of our third processing stage, which grades the
isolated shape for correctness.

3.4 Stage 3: Detail Validation

Stage 3 compares only the isolated sample of the recognized detail
to a set of template details to score the sample’s quality. The system
begins by centering, scaling, and resampling the isolated sample
points so that they lie in a [−1,1] range on the x and y plane. We
then create a map of some provided resolution n such that a detail is
represented as a n×n matrix where space in the figure is mapped to
a cell of the matrix, each cell being some range [xi,x j], [yi,y j]. Each
cell is then given a p-value based on the number of points that lie
within the range for each cell. A visualization of this is shown in
figure 6. The same system is applied to each of the templates, then
each template matrix is then averaged cell-wise to form a template
mapping. The template matrix Q is compared sampled detail matrix
P with equation 4 to determine how closely the two matched. The
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Det. # ∆a,g1 ∆a,g2 ∆g1,g2 F1-Score Det. # ∆a,g1 ∆a,g2 ∆g1,g2 F1-Score

1 0.69 0.68 0.37 0.787 10 0.21 0.20 0.10 0.962
2 0.18 0.44 0.33 0.857 11 0.47 0.45 0.21 0.878
3 0.07 0.11 0.16 0.978 12 0.46 0.44 0.11 0.872
4 0.27 0.30 0.12 0.927 13 0.13 0.11 0.11 0.966
5 0.08 0.49 0.49 0.978 14 0.42 0.41 0.15 0.881
6 0.31 0.56 0.26 0.958 15 0.50 0.49 0.09 0.770
7 0.47 0.26 0.13 0.855 16 0.21 0.19 0.08 0.919
8 0.28 0.33 0.13 0.966 17 0.57 0.66 0.34 0.788
9 0.35 0.20 0.07 0.904 18 0.45 0.49 0.21 0.925

Table 2: Classification results and average scoring differences for each detail across all graded tests. n=141 for all details except for Detail 2,
where n=185. ∆a,g1 denotes the average point score difference between Auto Rey-O and Grader 1, ∆a,g2 is the difference between Auto Rey-O
and Grader 2, and ∆g1,g2 between Grader 1 and Grader 2.

best match is then found by shifting the the sample matrix by row
and column to find the best possible position when compared to the
template, given that some details will match in terms of their stroke
and dimension but have somewhat different centers relative to the
the template.

n

∑
i=1

n

∑
j=1

max
(
0,Qi, j −Pi, j

)
(4)

The value of “distance” between template and sample is between
0 and 1, with 0 being the best. A shape that receives full credit for
neatness is characterized as how close the sample is to the templates.
Any value below 0.5 assigned to a sample is given full credit of 2
points. A value between 0.5 and 0.9 is given partial credit of 1 point.
A value above 0.9 is given 0 points.

4 DATA COLLECTION AND RESULTS

We conducted a study with 68 cognitively healthy participants to
complete a Rey-Osterrieth Complex Figure Test between the ages of
19-32. Although this test is meant to assess constructional ability and
memory loss, healthy participants do not always score full marks on
an ROCF [19], and indeed our testing corpus reflects a wide range of
scores that conform to established normative data for our participants.
All participants took the test in a simulated neuropsychologist’s
test environment and completed all three conditions (Copy, Recall,
Delayed Recall). Participants were given a Neo SmartPen N2 and
completed tests on pre-printed “blank” canvas pages that tracked the
pen’s location and instantaneously digitized all stroke data, allowing
a more authentic testing experience since the ROCF is typically
administered via pen and paper.

A total of 204 sketches from the 68 participants were collected.
Of these, 5 perfect-score tests were set aside to be used as templates
for Stage 3 validation. 14 were not gradable or their sketch data was
corrupted, bringing the total graded to 185. All tests were also graded
by two field experts whose grades we consider “ground truth” in this
context. The first grader is a practicing clincial neuropsychologist
and the second is a professor specializing in cognitive and visual
perceptual rehabilitation in older adults. We measure our system’s
success in two ways: the F1-Score of our recognition algorithm for
each detail, and the comparison between our system’s total grade
and the expert graders’ total grade. For the latter, both our system’s
and the grades are on the 36-point scale as defined in Section 1.1.

A key factor considered when calculating F1-score was the sub-
jectivity of distortion thresholds. While we implemented our own
thresholds for distortion in Stage 3, instructions for the ROCF in the
literature leave the definition of “distortion” at the discretion of the
grader [46]. For recognition purposes we are interested in gauging
whether our system can successfully either find a detail or confirm

its absence. The F1-score reports our system’s ability to recognize
the existence of a detail. Since we are still interested in comparing
36-point grades that also integrate distortion as partial credit, we
also calculate Spearman’s rank coefficient (ρ = 0.767) between our
automatically-graded tests and those of our expert grader.

5 DISCUSSION AND LIMITATIONS

5.1 Results Discussion
In clinical neuropsychology, grading Rey Osterrieth Complex Fig-
ure tests has been the subject of constant iteration and is an active
research topic, with numerous methods of interpretation being pro-
posed and refined. As such, analyzing the process of grading these
ROCFs automatically is not a trivial subject. Our analysis centered
on simulating the perception of an detail since the granular differ-
ences in distortion are frequently attributed to grader subjectivity.
Our aim, then, was the provide evidence the system perceived the
details correctly, even if they might have been slightly distorted, or
in the case of severe distortion the Stage 3 validation stage would
be able to separate those clear cases. In terms of overall score com-
parisons, we sought to analyze how far apart individual test grades
our system was from those of expert graders. Although the grades
from individual graders were closer to each other than between each
grader and Auto ReyO, our system compares favorably due to the
high F1-score of the vast majority of details, and the average differ-
ence between Auto ReyO and our system being around 3 points out
of 36 possible points for an ROCF test. We believe these results are
significant in light of the fact that a fully automated ROCF grader
that grades all 18 details has yet been proposed.

Also of note is the performance of detail 2, the large rectangle that
serves as the anchor for the rest of the sketch. The organizational
strategy score of the Rey-Osterrieth Complex Figure test places the
highest priority on the existence of Detail 2 in a sketch due to its
importance to the overall figure structure [43]. For the purposes
of our system, this resulted in calculating F1-Score for recognition
of the 18 details being conditional on whether detail 2 could be
successfully recognized within a sketch. Exceptionally poor figures
that lack a discernible detail 2 almost always result in very low or
ungraded scores when hand-graded. Similarly, in very rare cases a
poorly drawn ROCF could be graded by Auto ReyO if detail 2 could
be recognized, while another ROCF that would score higher might
not be graded due to a detail 2 that could not be recognized. For this
reason, we have designed our recognition hierarchy such that the
test is not graded if it cannot automatically recognize detail 2. This
provides the most consistent application of grading requirements
that is still consistent with the grading rubric as presented in the
Compendium of Neuropsychological Examinations [46].

A total score of 0, however, is not necessarily due to a true nega-
tive. For 44 sketches, our algorithm was unable to find detail 2 due
to a sloppy or unconnected drawing, but other details would exist. If
we flatly calculated F1-Score of all Details for every sketch included
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Figure 7: Grade plots for all 36-point scores, compared between Auto Rey-O and expert graders (n=141). (a) p=0.799, (b) p=0.829, (c) p=0.948

the ungraded ones, this would assign incorrect false negatives to the
rest of the details. For that reason we tier F1-score calculations; for
detail 2 we calculate it for all sketches (n=185), and for all other
Details we calculate it where detail 2 was correctly detected (n=141).

The F1-Score results in Table 2 and the graph in Figure 7 demon-
strate the effectiveness of Auto Rey-O. Our top-down system cor-
rectly identifies and validates the details with a high enough F1-score
that shows the system working for typical test-takers. Table 2 also
shows the average differences in scores (in points, maximum of 2)
assigned between our Auto Rey-O system and our expert graders.
All of the average differences in scores for each detail are well below
1 point and the vast majority below half a point, indicating a marginal
difference in scoring between expert graders and our Auto Rey-O
system. The system also works successfully for ROCFs with higher
amounts of distortion. Such instances display the flexibility of the
system in still identifying present details even if the participant has
heavy lapses in memory.

The lowest-performing details are 1, 17 and 15. These had the
highest amount of false negatives, although our manual review of
these false negatives showed our system did recognize the details but
chose to grant a score of 0 due to our threshold for distortion. Further
refinements of distortion threshold values for these two details would
improve their recognition quality.

Figure 7 compares the scores assigned by our automated grader
and the two expert graders. Between the two expert graders,
the correlation was p = 0.948, a Spearman’s rank coefficient of
ρ = 0.942, and an average difference in scores of ∆g1,g2 = 1.68.
Between our system and grader 1, p = 0.799, ρ = 0.765, and aver-
age ∆auto,g1 = 3.21. Between our system and grader 2, p = 0.829,
ρ = 0.802, and average ∆auto,g2 = 2.78. Our automated system pro-
duced grades with a generally high correlation with those of the
graders, although the grades from the experts were more similar to
each other. In all three cases, low-scoring tests somewhat deviate
across all graders, even between the expert graders. This is likely
due to the aforementioned ambiguity in interpreting detail distortion.
Our automated grader can also be observed to be consistently too
strict on grading that produces consistently lower scores, which is
partially attributed to the fact that it does not recognize details that
were placed in the wrong location. In addition, at the suggestion of
the expert graders who also served as domain experts, we chose to
prioritize consistency in grading over leniency when deciding on par-
tial credit thresholds since consistency is one of the key advantages
of an automated recognition system.

5.2 Limitations

The main limitation of this graph-based approach to top-down
sketch recognition is the reliance on line connections. Our vertex-

contraction algorithm in Step 1 of the system’s process does connect
lines with corners within a certain radius. We found this technique
worked very well if sketches were drawn with reasonable neatness.
If the lines are disconnected by more than half an inch, however,
these lines will remain disconnected. This was a conscious design
choice since vertex contraction cannot be too aggressive; otherwise,
regions where any correct sketch would have high numbers of ver-
tices would all get incorrectly contracted into one. This is the case
such as the area where detail 6, 7, 3, and 8 all converge—even
neatly-drawn sketches have a high concentration of vertices here.
We intend to improve refine the recognition system to “jump” gaps
and close disconnected lines only where appropriate.

6 FUTURE WORK AND CONCLUSION

Refinements can be made to help recognize specific kinds of poorly-
drawn details. As previously mentioned, most sources of grading
inaccuracies for our system came from poorly connected graphs due
to sketch sloppiness. For healthy participants taking this test, our
expert graders attributed sloppiness as a lack of effort rather than
genuine memory loss if the patient has no hand motor issues. Still,
there would be an interest in supplementing our graph traversal with
connecting otherwise unconnected vertices to improve recognition
performance.

Additionally, improvements to our Stage validation approach
could be made to recognize finer details. Our validation method
sometimes may not properly distinguish between small changes,
such as an extra stray mark or one line missing. Identifying missing
lines is important for details 8 and 12, where the number of parallel
lines drawn is relevant to its grading. Our validation method is able
to find these discrepancies somewhat frequently, but potential for
improvement exists.

Lastly, we aim to work with clinical neuropsychologists to ad-
minister their test to willing clients to evaluate system usability in
a clinical setting. This would produce additional sketch data taken
from actual patients, and would allow us to perform UI/UX usability
studies for clinicians. The ultimate aim of the system is to aid diag-
nosis process by automating the grading of an ROCF, so evaluating
the user experience of clinicians as they collect the digital data and
use the Auto Rey-O application for themselves is the next step to
further this project.

Our Auto ReyO automatic Rey-Osterrieth Complex Figure test
grader demonstrates the validity of a top-down sketch recognition
approach using graph traversal algorithms. This significantly sim-
plifies the recognition process where a bottom-up approach would
need to take into consideration a prohibitively wide array of possible
shape interpretations and re-interpretations. By employing graph
crawling, classical vertex search, and optimization algorithms we
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are able to identify key sub-shapes of geometric shapes.
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