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Abstract: Assessing spatiotemporal variation in water quality and heavy metals concentrations
in wetlands and identifying metal contamination source are crucial steps for the protection and
sustainable utilization of water resources. Using the water quality identification index (Iwq), heavy
metal pollution index (HPI), hierarchical cluster analysis (HCA) and redundancy analysis (RDA),
we evaluated spatiotemporal variation in water quality and heavy metals concentrations, and their
interrelation in wetlands along the middle and lower Yellow River. The average Iwq was highest
during flood season but the average HPI was lowest in the same season. Meanwhile, the trend in mean
HPI across three hydrological seasons was the opposite to that of mean Iwq. There was significant
variation in wetlands water pollution status across seasons. During the flood season, the wetlands
in the affected area with hanging river were seriously polluted. In other seasons, pollution in the
artificial wetlands was even more severe. Moreover, serious pollution of wetlands in belt transect #03
(Yuanyang-Zhongmu) was more frequent. Dissolved oxygen and chemical oxygen demand strongly
influenced heavy metal concentrations, while other water quality parameters had different influences
on heavy metal concentrations in different hydrological seasons. The causes of water pollution were
divided into natural factors and human disturbance (with potential relationships between them).
The polluted wetlands were greatly affected by the Yellow River during the flood season while they
were more impacted by agricultural and domestic sewage discharge in other seasons. However,
heavy metal deposition and leaching into riparian wetlands were still affected by diverse channel
conditions. If this trend is allowed to continue unabated, wetlands along the middle and lower Yellow
River are likely to lose their vital ecological and social functions.

Keywords: water quality; heavy metals; riparian wetlands; middle and lower Yellow River;
Henan Province

1. Introduction

Wetlands are among the most productive and vulnerable ecosystems in the world, have
fundamental ecological functions, and play an irreplaceable role in the maintenance of biodiversity
and human development [1–3]. Despite the relevant departments’ efforts to restore natural wetlands
for human well-being [4], global change and intense anthropogenic pressure have destroyed more
than half of global wetlands during the last century [5]. Riparian wetlands are buffer zones for the
water and nutrient budget of the landscape which play an important ecological role. However, because
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they tend to be quite narrow in width, their importance for landscape ecology, biogeochemistry, and
biodiversity is often overlooked [6]. Riparian wetlands are thus often threatened by water resources
and hydropower projects that primarily consider human demand, causing changes in the hydrological
regimes, eutrophication, nutrient enrichment, salinization, and pollution with organic compounds,
pesticides and heavy metals [7–11].

Water is the chief constituent of wetland ecosystems [12] and water quality is not only indicative
of water’s suitability for maintaining various industrial applications and processes, but also as a
potential factor in supporting biodiversity and ecosystem function [13–15]. Water quality is generally
expressed as the concentration of inorganic and organic materials in the water, and its degradation
can seriously affect wetland ecosystems function [15–17]. Meanwhile, heavy metal pollution is one
of the most important factors in the short-term anthropogenic impacts on wetlands [18–20]. Heavy
metals, which affect water quality and the trophic structure and function of communities [18,19,21,22],
enter wetland ecosystems in different ways. In contrast to chemical pollutants, heavy metals cannot be
removed by natural degradation processes. Potential threats to human health and wetland ecosystems
make trace element pollution of freshwater ecosystems an ongoing environmental problem. Therefore,
it is important to study trace element concentrations, distributions, sources, and health risks to protect
water resources and control water pollution.

Wetlands with healthy aquatic environments can provide various ecosystem services; thus, the
identification of spatiotemporal alterations and distribution of water quality and heavy metal pollution
origins in water of wetlands is important [23]. Previous research on the wetlands along the Yellow
River in China, mainly conducted in the headwaters and delta areas [24,25], confirmed that wetlands
were suffering from great threats which had resulted in the reduction of area and aggravation of
landscape fragmentation. However, research on the wetlands along the middle and lower Yellow
River has been rare. The wetlands along the middle and lower Yellow River were, however, seriously
degraded by climate change, lateral infiltration through banks elevated above the water surface,
and anthropogenic activities. Moreover, China put forward a strategic policy to promote ecological
protection and high-quality development in the Yellow River basin in 2019. The main reasons for
monitoring wetland water have been to assess water quality and heavy metal concentrations compared
to existing standards and to verify whether they are suitable for ecosystem service sustainability.
Wetland water research has not only evolved to investigate trends in the aquatic environment, but also
to seek their potential drivers and to identify pollution sources [15,16,18,19]. Therefore, there is an
urgent need to evaluate the status and spatiotemporal dynamic of water quality and heavy metals
in wetlands along the middle and lower Yellow River. Meanwhile, the relationships between water
quality and heavy metals and their drivers, which can deepen our understanding of the importance of
wetland conservation, deserve further exploration.

Our main objectives were (1) to quantify water quality and heavy metal concentrations and
to determine wetlands status; (2) to analyze spatiotemporal dynamics of water quality and heavy
metals and their drivers; and (3) to examine the correlations between water quality parameters and
heavy metals. This study will be beneficial to conservation and restoration of the degraded wetlands,
especially along the middle and lower Yellow River.

2. Materials and Methods

2.1. Study Area

The study area involves ten counties along the middle and lower Yellow River in Henan province,
China (Figure 1). It ranges from Gongyi city in the west to Lankao county of Kaifeng city in the
east, with most areas consisting of typical alluvial plain (113◦5′–114◦41′ Long. and 34◦0′–34◦57′ Lat.).
The altitude of the study area gradually decreases from southwest to northeast. It is located at the
north–south transitional climate zone with a temperate-subtropical, humid and sub-humid monsoon
climate. The average annual temperature is generally 12–16 ◦C with obvious differences between
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mountain and plain areas in temperature. The annual average precipitation is about 500–800 mm with
approximately half in summer in the form of frequent rainstorms [26,27]. The study area, which is one
of the national food production bases, has a long history of agricultural cultivation and the landscape is
dominated by agriculture. Most of the study area is located at low elevation and is seriously influenced
by the Yellow River. East of Huayuankou in Zhengzhou, the lower Yellow River is characterized by
gentle flow, wide and shallow channel controlled by dikes, leading to serious silt deposition and risen
river bed, thus forming the “hanging river”. Changes in river channel coupling with the irrigation
practices have resulted in dramatical dynamics of surrounding landscape, which is especially true for
the formation and maintenance of wetlands and the appearance and disappearance of ponds.

Figure 1. Location of sampling sites (c) at the middle and lower Yellow River, Henan (b), China (a).
18 wetlands were investigated.

2.2. Sample Collection and Analysis

The study area was divided into 5 belt transects, according to the distance from Xiaolangdi dam
and the height of the riverbed above the ground level (Table A1). Based on remote sensing images and
field investigation, 18 typical riparian wetlands were selected as sample sites, including both natural
and artificial wetlands at the north and south Banks of the Yellow River and/or inside and outside the
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dykes. Water samples were collected from the middle as in depth-wise of the surface water, 50 cm
below the water surface at each site. Typical total stream depths were 1m, but where stream depth was
is <0.5 m, we sampled at half the depth of the stream. We sampled water between and 12 April and 20
April 2018 during the pre-flood season (SB), from 27 to 31 July 2018 during the flood season (SD) and
from 26 October to 1 November 2018 during the post-flood season (SA). The sampling timing was
planned to avoid significant rain events (10 mm over 48 h).

The water samples were stored in prewashed polyethylene bottles and shipped to the lab in a
cooled container following dilution with HNO3 or H2SO4, depending on the analysis to be conducted.
In situ measurements of dissolved oxygen (DO) were performed on each water sample with an SX736
multi-probe. Duplicate co-located samples were collected at each monitoring site and the percent
difference in results between duplicates was always less than 10%.

We analyzed 12 chemical and heavy metal parameters. Ammonia nitrogen (NH3-N) was
determined by Nessler’s reagent method, total phosphorus (TP) by the ammonium molybdate method,
total nitrogen (TN) by the alkaline persulfate digestion method [28], and chemical oxygen demand
(COD) by the dichromate reflux method [29]. Heavy metals including lead (Pb), zinc (Zn), copper (Cu),
cadmium (Cd) and chromium (Cr) were analyzed using inductively coupled plasma mass spectrometry
(ICP-MS). The determination of arsenic (As) and mercury (Hg) concentrations in water samples was
conducted by atomic fluorescence spectrophotometry (DB51/T836-2008). All water quality parameters
were determined within one week of sample collection.

2.3. Quantifying Water Quality

The comprehensive water quality identification index (Iwq) and heavy metal pollution index (HPI)
provide substantial information for water quality assessment. The Iwq is based on single-factor water
quality identification index (Pi), so Pi is calculated firstly [30]. Iwq and HPI both are simple, easy to
understand [31,32] and can eliminate the variations between different water quality parameters that
are used individually [33].

2.3.1. Single-Factor Water Quality Identification Index (Pi)

The Pi consists of integer and decimal fractions and Pi can be expressed by the formula:

Pi = C1 ×C2 ×C3 (1)

where C1 is the integer and shows the grade of water quality; C2 is the decimal fraction and shows
the degree of monitoring data in interval of C1 class water quality changing; C3 is the comparison
difference of water quality grade and function goal grade.

According to the Surface Water Environment Quality Standards of China, when the water quality
grade is between class I and V, for the general indicators (TN, COD, TP and NH3-N) and DO, C1 ×C2

is calculated by the following Equations (2) and (3), respectively:

C1 ×C2 = a +
Ei − Els

Eus − Els
(2)

C1 ×C2 = a + 1−
Ei − Els

Eus − Els
(3)

where Ei is the monitoring value of ith target; Eus is the upper limit of ith target in water quality
standard interval of class a; Els is the lower limit of ith target in water quality standard interval of class
a; a = 1, 2, 3, 4, 5, based on monitoring data and national standards.
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When the water quality is worse than or equal to class V, for the general indicators (TN, COD, TP
and NH3-N) and DO, C1 ×C2 is calculated by the following Equations (4) and (5), respectively:

C1 ×C2 = 6 +
Ei − Evus

Evus
(4)

C1 ×C2 = 6 +
Evls − Ei

Evls
×m (5)

where Evus is the upper limit of ith target in water quality standard interval of class V; Evls is the lower
limit of ith target in water quality standard interval of class V; m is the correction coefficient, m = 4 in
this study [30].

C3 = C1 − fl (6)

where fl is the goal grade of water environment functional area. Note: when C3 > 9, fl = 9.

2.3.2. Comprehensive Water Quality Identification Index (Iwq)

Iwq is used to evaluate general water quality both qualitatively and quantitatively. Water quality
parameters (e.g., TP, TN, COD, DO and NH3-N) were selected in this study to conduct a comprehensive
evaluation of water quality in water body using Iwq, which is calculated by the following formula:

Iwq = X1 ×X2X3X4 (7)

X1 ×X2 =
1
m

∑
(P1 + P2 + · · ·+ Pm) (8)

where X1 ×X2 shows comprehensive water quality index; Pm is single factor water quality index (that
is C1 ×C2 in single factor water quality identification index), and each indicator is weighted evenly;
m is the number of indicators; X3 is the number of indicators which are worse than water quality
standards graded among all indices; X4 represents the comparison results of water quality categories
and function zoning category.

Surface water quality grades can be determined based on X1 ×X2 of Iwq (Table 1). According to
the Surface Water Environment Quality Standards of China, the water quality in this study area should
meet class III.

Table 1. Comprehensive water quality grade evaluation standards.

Judging Basis The Water Quality Grade

1.0 ≤ X1 ×X2 ≤ 2.0 class I
2.0 < X1 ×X2 ≤ 3.0 class II
3.0 < X1 ×X2 ≤ 4.0 class III
4.0 < X1 ×X2 ≤ 5.0 class IV
5.0 < X1 ×X2 ≤ 6.0 class V
6.0 < X1 ×X2 ≤ 7.0 Inferior, but not black and foul

X1 ×X2 > 7.0 Inferior, black and foul

2.4. Quantifying Heavy Metal Pollution

The HPI can objectively reflect the quality of water and its suitability for drinking purposes with
respect to metals pollution [34]. Heavy metals (e.g., As, Hg, Cd, Cr, Cu, Pb and Zn) were selected in this
study to conduct a comprehensive evaluation of heavy metal pollution in the water body using HPI.
The pollution critical index (HPIc) is 100. HPI > 100 indicates that the level of heavy metal pollution in
a water body exceeds its maximum acceptable level [34,35].
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HPI is based on a weighted arithmetic quality mean method as follows [31]:

HPI =
n∑

i=1

(QiWi)/
n∑

i=1

Wi (9)

Wi = k/Si (10)

Qi = 100
(

Ci
Si

)
(11)

where Wi (weight unit) is calculated as 1/Si where Si is the recommended standard of the relevant
metal. Generally, the proportionality constant (k) determined by the condition is set at 1 for simplicity
of calculation [34]. n is the number of estimated metals; Qi is the individual quality rating of ith metal
and Ci is the measured value of the ith metals in µg/L. The standard allowable value (Si) for each
parameter was taken from the criteria for class III of the water quality standard (GB3838-2002) [36].

2.5. Multivariate Analyses

Four multivariate statistical methods including the principal components analysis (PCA),
hierarchical cluster analysis (HCA), Pearson’s correlation analysis, and redundancy analysis (RDA)
were utilized in this study. Prior to the multivariate analyses, the water quality and heavy metal
parameters were required to conform to a normal distribution [37,38]. Therefore, the normality of the
distribution of each variable was checked by analyzing its kurtosis and skewness [39]. The results
showed that all parameters were normally distributed and in line with the standard of the statistical
analysis. All the tests were conducted using SPSS® software for Windows 22.0 and Canoco® software
for Windows 5.0, and the graphics were generated in Origin for Windows 9.1®.

Firstly, Kaiser Meyer Olkin (KMO) and spherical Bartlett tests were used to analyze the suitability
of the water quality and heavy metal parameters for PCA. The KMO index compared the values of
correlations between variables and those of the partial correlations [40]. Generally, this index should
be greater than 0.5 for a satisfactory factor analysis. Bartlett Test of Sphericity was used to check the
null hypothesis that the intercorrelation matrix comes from a population in which the variables are
uncorrelated [41]; the null hypothesis was rejected at the significance level of 0.05. PCA was used
to identify the parameters which explained the majority of contamination status. PCA selected a
small number of important variables through linear transformation of multiple variables, and several
principal components were used to explain water quality and heavy metals concentrations, it becomes
more meaningful [39,42].

HCA includes both the variable HCA and the case HCA [28,43]. The variations in water quality
and heavy metal parameters were addressed using spatiotemporal matrices. Clustering was based
on the similarity between observations and successively by case HCA which is the most widely used
clustering method for delineating differences or similarities among sampling sites [44,45].

Finally, Pearson’s correlation analysis and RDA were used to identify relationships among
individual parameters. RDA is a direct gradient analysis method that statistically evaluates the
relationship between one or a set of variables and another set of multivariate data [46]. It has been
successfully used in various environmental studies, including for correlations among sampling sites
and environmental conditions and outcomes. The advantages and disadvantages of RDA relative
to other related multivariate analytical techniques have been discussed extensively [47–49]. In this
study, the standard deviation (SD) of the average parameter concentrations in this study were 1.2
(SD), 1.0 (SA) and 1.2 (SB), respectively, suitable for a regression analysis by a linear model. Therefore,
heavy metal elements and water quality parameters are used as the response variables in RDA and the
individual and comprehensive effects of environmental factors on these response variables respectively.
RDA yields directional indices of the shared variance between two data sets, which can be regarded
as predictive of the other. RDA biplot diagrams explain the relationships between them. In the
diagrams, the arrows indicate the correlations among parameters: a longer arrow indicates that the
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corresponding parameter was more important; a small angle between two arrows indicates that the
correlation between the two corresponding parameters was strong [50].

3. Result and Discussion

3.1. Comprehensive Water Condition

3.1.1. Water Quality Status

The mean Iwq value was 5.033, 5.032 and 2.995 the in SD, SA and SB, respectively. A bar chart
shows that the Iwq value in SB was obviously lower than that in SD and SA (Figure 2a). Based on the
Iwq classification, the water quality was rated as “class II” in SB, but “class V” during other seasons
(Table 1). There were six sample sites where the Iwq value was highest in SD and lowest in SB. 83%
of which were natural wetlands within the dike. However, there were 10 sample sites where the Iwq

maximum value occurred in SA and the minimum value occurred in SB, all of which were artificial
wetlands. Only two natural wetlands did not follow this order.

Figure 2. Iwq values in different sampling belt transects (a) and wetland types in three seasons (b).

The water quality met the standard (Iwq value ≤ 4) in SB. In SD and SA, water quality of major
wetlands was worse than class III standard. The average Iwq value of belt transect #03 and #05 in SA

were slightly better than in SD, while the other three sample belts were the opposite. The mean Iwq

value of two wetland types in the three sampling periods in this study area is shown in Figure 2b. The
water quality situation of natural wetlands was slightly better than that of artificial wetlands in SA

and SB. The water quality situation of artificial wetlands was obviously better than that of natural
wetlands in SD.

Overall, water pollution was most serious in SB, followed by the SA. We expected to observe
a higher concentration of water quality parameters during low-flow periods [15–17]. Meanwhile,
because the selected wetlands were in a major agricultural province, the increased runoff in summer
and the fertilization and sewage discharge from farmlands around the wetlands in SB and SA may be
the main cause of pollution [51–53]. Water quality was excellent in SB, possibly due to the effects of a
constructed reservoir on control of river water and sediment [54]. More river runoff would increase the
quantity of eroded material and cause more serious water pollution in SD. Because most of the selected
natural wetlands were close to a river channel, their water quality was worse than that of artificial
wetlands in SD. In SA and SB, artificial wetlands were strongly disturbed by human activities, while
natural wetlands were less disturbed. The water body of riparian wetlands had some self-purification
ability, and the water quality of natural wetlands was slightly better than that of artificial wetlands.
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3.1.2. Heavy Metal Pollution

The mean HPI value was highest in SB (Table 2). All HPI values were lower than HPIc in SD,
indicating that heavy metals were not polluting the wetlands. Other than two sites, heavy metal
concentrations were lower than the pollution threshold in SA. However, the HPI value of the polluted
sample sites exceeded the HPIc values 2–3 times over, indicating serious heavy metal pollution. The
HPI of the sample site (1-S-I-I) with severe human disturbance was close to exceeding the standard,
and was obviously higher than that in the adjacent natural wetland (1-S-I). The HPI value of all sample
sites exceeded the HPIc value by an order of magnitude or more in SB, primarily because Hg content
was very high.

Table 2. The Heavy metal Pollution Index in different hydrological seasons.

SN HPID HPIA HPIB

1-N-O-2 6 0.1626 10,265
1-S-I 20 75 47,192

1-S-I-I 37 99 2780
2-N-O 55 0.0495 64,977
2-N-I 25 0.0493 7885
2-S-I 37 0.0045 30,030

3-N-O 29 0.0875 78,995
3-N-I 28 37 49,507
3-S-O 32 0.0233 4796
3-S-I-2 0.1526 0.0626 10,910
4NO 42 7 7197
4-N-I 30 0.0485 33,280
4-S-O 49 62 40,775
4-S-I-2 19 306 69,830
5-N-O 19 33 42,339
5-N-I 31 205 55,055
5-S-O 45 0.0575 7660
5-S-I 41 0.1054 39,456

Notes: SN—Sampling site number; HPI—Heavy metal pollution index (the subscripts D, A and B represent the
hydrological seasons: flood season, post-flood season, pre-flood season, respectively).

Moreover, there were some differences in the temporal pattern of HPI. There were 11 sampling
sites whose HPI value was highest in SB and minimum value appeared in SA, among which artificial
wetlands accounted for 64% and five of all were within the dike. Meanwhile, there were seven sampling
sites whose maximum HPI value appeared in SB and minimum value appeared in SD, among which
artificial wetlands account for 57%. Five of these were within the dike. In terms of wetlands types, HPI
also showed some seasonal variation. The mean HPI value in natural wetlands was higher than that in
artificial wetlands in SD and SA while it was the opposite in SB.

Generally, the spatiotemporal variations in metals concentration in water bodies depend on many
factors, including climate, soil type, and pH. Compared with the natural environment, human activities
such as urbanization and industrialization aggravate the heavy metal pollution in water [9]. High
rainfall and water volume in the Yellow River in SD may accelerate the water flow in wetlands, diluting
heavy metal elements. Meanwhile, dense plants in SD also have a certain adsorption effect on heavy
metals. Field investigation shows that there were no industrial sources of heavy metals around the
selected wetlands. The flood season was in the period of agricultural cultivation in Henan province,
and the content of heavy metal elements in agrochemicals and fertilizers is relatively high. Therefore,
the excess concentration of heavy metals in the wetlands could be caused by agricultural activities in
the surrounding farmlands in SD.

Heavy metal elements were deposited in large volumes (mainly Hg) in SB. The river runoff

was relatively small and the wetland plants just germinating, which would cause the heavy metal
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deposition in the wetlands. The HPI value of artificial wetlands was higher than that of natural
wetlands, indicating that the excessive heavy metal concentrations could be caused by human factors,
or the vegetation of artificial wetlands would be less than that of natural wetlands. Compared with
artificial wetlands, natural wetlands were closer to the river channel and most of them live within
the dike of the Yellow River. Heavy metals carried by the Yellow River could be deposited in natural
wetlands, resulting in the heavy metal pollution in them being more serious.

3.2. Spatiotemporal Analysis

Most water body parameters had significant spatiotemporal variation. Among them, the water
body parameters with large spatiotemporal changes include CV of TN, TP, Hg, Cd, Cr, Cu, Pb, and Zn,
all of which were over 100%. COD and As had small spatiotemporal changes compared with the other
parameters and the standardized coefficient of variation (CV) were 68.85% and 68.79%, respectively
(Table 3).

Table 3. Statistical information of water body parameters in different hydrological seasons in wetlands
along the Yellow River.

Parameter/(mg/L) Mean Min Max SD CV Mean in SD/SA/SB

DO 4.93 0.06 12.64 3.61 73.30% 2.1/3.38/9.31
NH3-N 1.41 0.154 5.984 1.37 97.36% 1.150/2.580/0.499

COD 42.97 1.535 121.3 29.59 68.85% 44.729/51.610/32.577
TN 2.15 0.258 10.161 2.53 117.63% 2.596/3.085/0.764
TP 0.27 0 3.108 0.64 236.79% 0.637/0.113/0.062
As 0.009 0.0008 0.0279 0.01 68.79% 0.1358/0.0038/0.0107
Hg 0.011 0 0.0811 0.02 189.32% 0/4.69 × 10−5/0.0347
Cd 0.026 0 0.1415 0.04 163.65% 0.0776/2.06 × 10−6/0
Cr 0.005 0 0.05858 0.01 274.42% 0/0.0102/0.0033
Cu 0.009 0 0.0582 0.02 159.74% 0.0006/0.0245/0.0033
Pb 0.010 0 0.0677 0.02 194.02% 0.0282/0/0.0006

Zn 0.027 0 0.1792 0.03 114.44% 0.0281/3.33 ×
10−7/0.0518

Notes: Mean—Mean concentration; Min—Min concentration; Max—Max concentration; SD—Standard deviation of
all values; CV—Coefficient of variation of all values.

3.2.1. Water Parameter Seasonality

The mean TP concentration was highest and lowest during flood season and pre-flood season,
respectively. The maximum TP value appeared in SD, while the minimum value appeared in SA

(Table 3). However, the seasonal sequence of average DO concentration was opposite to TP, while the
maximum and minimum value were also opposite. The mean NH3-N, COD, and TN concentrations
were highest and lowest in SA and SB respectively. Among them, the maximum concentration of
NH3-N appeared in SA and the minimum appeared in SB. The maximum COD concentration appeared
in SB, and the minimum appeared in SD. The maximum value of TN concentration appeared in SA and
the minimum value appeared in SD. The chemical status of each water body studied in SB was better
than those of other seasons, consistently with the Iwq results.

Based on the Surface Water Environment Quality Standards of China, the mean DO concentration
only reached class III in SB, possibly because temperature, microbial metabolism, and organic matter
degradation are higher in this season [55,56]. The average concentrations of TN, NH3-N and TP in
the majority of sites exceeded the standard threshold in SD. Meanwhile, the concentrations of TN
and NH3-N in many sites also exceeded the class III in SA, while these three parameters all met the
standard in SB. The reason may be the discharge of domestic and industrial water around the wetland
(such as the waste water generated by the excrement of the farm and the water discharge from the
sewage treatment plant, etc.) and the drainage after the excessive use of chemical fertilizers in the
farmland [57–59]. N and P concentrations in wetland water were low in SB, which may be associated
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with artificial adjustments of river water and sediment. After the operation of the Xiaolangdi dam,
ammonia nitrogen management obviously improved near the dam, and thus, the downstream wetland
water quality of ammonia nitrogen pollution might be reduced [54].

Higher COD aids estimation of organic matter pollution. Our results agree with previous findings
that the mean concentration of COD exceeded the class III in three seasons [56]. The excessive
concentration of COD could be related to the leaching and transport of natural, domestic sewage,
agricultural and industrial pollutant, the high surrounding population density, and the extent of
construction and other social factors [39,41,45]. The seasonal sequence of average COD concentration
was similar to TN and NH3-N sequence. The excess concentration of COD could be the same as the
source of N, which was the discharge of agricultural and domestic sewage around wetlands.

Heavy metal concentrations exhibited distinct seasonal variation (Table 3). The mean Cr
concentration was highest and lowest in SA and SD, respectively. However, five other elements’
concentrations had different seasonal dynamics, and the temporal difference between the maximum
and minimum values was also great. Among these, Hg exceeded the standard seriously in SB, and its
difference between seasons was also the greatest. Due to the very high value of a single parameter, the
HPI value was affected mainly by this element.

The concentration of As in all selected sample sites was lower than class III allow in all three
seasons. The concentration of Hg in all selected sample sites was lower than the detection line in
SD; there were three sample sites that exceeded the standard in SA, which is 1–3 times higher than
the standard. In SB, the concentration of Hg exceeded the standard and was many times or even
hundreds of times of the threshold value in all selected sites. It is worth noting that Hg concentration
was low in almost all wetlands water in SD and SA. In SD, except for one wetland in belt transect #03,
the concentration of Cd from other wetland water exceeded the standard threshold, and the highest
concentration was 28 times exceeded than the III class standard of water quality. The concentration of
Cd was below the standard in the other two hydrological seasons. In SD, Pb concentration exceeded the
standard at three sites in belt transect #01, #02 and #03, respectively, while it was normal in two other
hydrological seasons. In SD, Cr concentration was lower than the detection line in all sites. However,
Cr concentration in two sites exceeded the standard in SB and SA. The Cu and Zn concentrations all
were lower than the standard values.

High Cd concentration was almost certainly a result of anthropogenic activities, especially
wastewater discharge from industry and the overuse of agrochemicals and fertilizers [60–62]. Excessive
Pb in wetland water is associated with anthropogenic origin, and travels via the freshwater input from
rainfall and freshwater from rivers [63]. If humans ingest the water or fauna from these wetlands,
the Pb can be harmful to human health [64]. Regarding seasonal difference, the main factor may be
human-caused. For example, all sites with higher Cr concentration were artificial wetlands. High Hg
concentration in wetlands could be related to lower water supply and excessive human interference in
SB. The excessive Hg may not only be caused by the human disturbance but also by natural factors
such as decreased runoff from the Yellow River and the plants in juvenile stage [64–68].

3.2.2. Analysis of Water Parameters’ Spatial Characteristics

KMO had a value of 0.673 greater than 0.5, which can take a satisfactory factor analysis. Meanwhile,
the null hypothesis of Bartlett Test of Sphericity was rejected at the significance level of 0.05, but in this
study, the value is 0, which is small enough to reject the null hypothesis. In fact, the PCA successfully
identified underlying interrelationships amongst the parameters.

In this study, four principal components with eigenvalues greater than 1 were extracted; they
explained 71.167% of the total variance in the water dataset (Table 4). The first and second principal
components accounted for 51% of the total variance among the original variables, and then the indices
with the highest load value > 0.7 were Cu (0.721) and Cd (0.788) [69], indicating that these two
water quality parameters can explain more than 50% of the water quality change information of
wetlands (Table 4). The contribution of the third and fourth principal components were 11% and



Sustainability 2020, 12, 1300 11 of 19

9%, respectively. The parameters with the highest load value were TN and COD, respectively, and
their values were 0.591 and 0.755. PC3 and PC4 including organic and nutrient variables can be
attributed to anthropogenic pollution sources, may be associated to influences from municipal and
industrial point-source discharges, agricultural nonpoint sources, livestock operations, and/or domestic
sources [41,69].

Table 4. Principal component loading matrix.

Water Quality Parameters Principal Component

1 2 3 4

DO −0.603 −0.579 0.327 −0.135
NH3-N 0.695 −0.089 0.055 0.33

COD 0.398 0.161 0.261 0.755
TN 0.555 0.28 0.591 −0.218
TP 0.269 0.597 0.554 −0.162
As −0.485 0.462 −0.317 0.423
Hg −0.662 −0.354 0.363 0.04
Cd −0.021 0.788 −0.33 −0.179
Cr 0.448 −0.504 −0.298 −0.205
Cu 0.721 −0.546 −0.186 −0.04
Pb 0.036 0.758 −0.096 −0.253
Zn −0.655 0.105 0.11 0.137

Characteristic root 3.208 2.902 1.32 1.11
% of variance explained 26.736 24.183 11.002 9.246

Cumulative % of variance 26.736 50.919 61.921 71.167

HCA groups sample sites according to their spatial similarities in water quality parameters and
heavy metal parameters [70]. By analyzing the principal component load matrix, the change of water
quality in wetland landscapes along the Yellow River can be better explained by the COD, TN, Cd
and Cu. Then, the wetlands in different hydrological seasons were statistically clustered by four
characteristic parameters. We built a dendrogram from the case HCA using Ward’s method and
grouped the 18 sampling sites into four statistically significant groups at the rescaled squared Euclidean
distance (SED) < 5.000 (Figure 4).

Cluster 1 included most sample sites, located in all belt transects in each hydrological season.
In SD, Cluster 2 was consistent with four sites, most of which were inside the dike or on the north side
of the Yellow River. TN, TP, COD, NH3−N and Zn in Cluster 2 sites were obviously higher than in
Cluster 1 wetlands, DO was the opposite of the former (Figure 3a). The overall pollution was serious
in Cluster 2 sites in SD. By analyzing the records of the ambient environments, Cluster 2 was found to
be in the affected area with hanging river. The Yellow River had great water volume and carried a
large amount of material in SD, which influences the wetlands along the middle and lower Yellow
River through the lateral infiltration mechanism, especially the sites within the great dike of the Yellow
River. In the north bank of the belt transect #03, the wetlands were also seriously polluted outside the
dike. Lateral infiltration was significant in this area due to topography and river situation; still, it was
an artificial wetland and the influence of human interference on it cannot be ignored.

In SA, Cluster 2 contained four sites, two inside and two outside the dike. Three were located at
the south side of the Yellow River (Figure 3b). Cr, Hg, Cu, Zn and TP in Cluster 2 were obviously higher
than in Cluster 1. The concentration of several heavy metal elements in Cluster 2 was higher than that
in Cluster 1. Cluster 2 included only artificial wetlands, except one. There was a high concentration
of heavy metals in SA, mainly due to human disturbance. Belt transect #03 (Yuanyang-Zhongmu) in
southern region of the Yellow River are located in Yuanfang of Kaifeng. According to field surveys, the
intense human development in the region (large areas of cultivated land, amusement parks, plants,
etc.), may have caused the high heavy metal concentrations.
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In SB, Cluster 2 contained three sites, two sites on the south bank inside the dike and one on
the north bank on the outside the dike. Cluster 3 was a fish pond with serious human disturbance
(Figure 3c). Cluster 2 was mainly characterized by serious organic pollution. Two of the clustering sites
were in the belt transects #03 and were artificial wetlands. Their surrounding areas were residential
areas and farmland, so the pollution source might be agricultural pollution and domestic wastewater.
Another wetland in Cluster 2 was located near the channel and fish pond on the south bank of the
Yellow River, and was also contaminated by human disturbance. Cluster 3 was a typical artificial fish
pond. An artificial oxygen pump raised its DO concentration. Due to the human disturbance, the
content of heavy metal elements was much higher than that of other wetlands.

Water quality differed among hydrological seasons. The covariability of water quality parameters
in three seasons was diverse, which indirectly indicates that water pollutants come from different
sources. Overall, the affected area with hanging river was seriously polluted, and the pollutants may be
accumulated through natural factors (the Yellow River lateral infiltration) in SD. The artificial wetlands
were seriously polluted in SB and SA, mainly by agricultural and domestic wastewater. There was
frequent serious pollution of wetlands in belt transect #03.

Figure 3. Dendrogram from cluster analysis based on water quality parameters for 18 sites during the
flood (a), post-flood (b) and pre-flood (c) seasons.

3.3. Correlations of Heavy Metals with Water Quality

3.3.1. Pearson Correlation Analysis

COD was significantly positively correlated (p < 0.05) with NH3-N and TN, and there was a highly
significant positive correlation (p < 0.01) between TN and TP, indicating that there was covariance
between organic pollution and inorganic pollution during the flood season (Table 5). Meanwhile, the
correlation of nitrogen and phosphorus concentrations in water was extremely significant (p < 0.01).
Both these elements may cause serious eutrophication in water. If the discharge of domestic sewage and
agricultural waste can be controlled eutrophication in SD may be avoided by reducing pollutant inputs.
There was no significant correlation (p > 0.05) between water quality parameters in SA. However,
there was a significant positive correlation (p < 0.05) between COD and TP in SB, indicating that COD
increases with increasing TP, which indirectly proves that COD is driven by domestic sewage and
agricultural sewage.
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Table 5. Pearson correlation coefficients matrix between the water quality parameters.

Period Parameter DO NH3-N COD TN TP

SD

DO 1
NH3-N −0.255 1

COD −0.02 0.520 * 1
TN 0.071 0.366 0.480 * 1
TP −0.047 0.256 0.414 0.895 ** 1

SA

DO 1
NH3-N 0.035 1

COD −0.424 0.065 1
TN 0.244 −0.098 −0.162 1
TP 0.086 −0.046 0.288 −0.046 1

SB

DO 1
NH3-N −0.389 1

COD −0.165 0.26 1
TN 0.365 0.001 0.376 1
TP −0.201 0.368 0.565 * 0.43 1

Notes: The SD, SA, and SB represent the three hydrological seasons, respectively flood season, post-flood season,
and pre-flood season. *: significance level = 0.05 (Two-tailed), **: significance level = 0.01 (Two-tailed).

According to the Pearson correlation analysis (Table 6), only As and Zn were significantly
correlated with water quality (though As and water quality had no significant correlation in SA), as
was negatively correlated with TN in SD. And it was also significantly negatively correlated (p < 0.05)
with DO, while extremely significantly positively correlated (p < 0.01) with COD and TP in SB. Zn was
negatively correlated with DO and positively correlated with NH3-N in SD. Zn was also positively
correlated with TP in SA and TP was positively correlated with NH3-N in SB. Heavy metal elements
were difficult to degrade in water, but the concentration of some heavy metal elements in water
decreased with increasing dissolved oxygen content in some wetlands, which may be partly due by
aerobic microorganism activities [71]. Although the correlation between heavy metals concentrations
and various water quality indexes was different, all of them were positively correlated, except DO.
In other words, these heavy metals and water quality likely covaried with each other [72]. Compared
with SB, the TP and As, DO and Zn show significant negative correlation, while the correlation between
COD, TP and heavy metals became insignificant in SD (Table 6). River surface runoff, rainfall, and
agricultural irrigation increased in SD. Zn and TP in agrochemicals and fertilizers enter into the
wetland system through irrigation water or rainfall/agricultural runoff [54,61]. Because of temperature
and hydrological conditions in SD, DO concentrations often decreased greatly. As is also not deposited
in wetlands water. Thus, DO and Zn show significant negative correlation and water quality results
from SB can differ from the “first flush” effects on the metal concentrations.

Table 6. Pearson correlation coefficients between the water quality parameters and heavy metals.

Period SD SA SB

Parameters As Zn As Zn As Zn

DO −0.128 −0.571 * −0.050 0.187 −0.513 * −0.133
NH3-N −0.068 0.540 * 0.219 −0.294 0.360 0.589 *

COD 0.125 0.001 0.081 −0.141 0.640 ** 0.204
TN −0.496 * 0.039 −0.141 −0.110 0.155 −0.034
TP −0.417 −0.036 −0.060 0.698 ** 0.658 ** 0.117

Notes: Relationships without significant correlations are not listed. *: significance level = 0.05 (Two-tailed);
**: significance level = 0.01 (Two-tailed).
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3.3.2. Redundancy Analysis

The results show that the first two axes explained 82.3% variation of water quality data. Among
the five water quality parameters, COD (IF = 1.3) and DO (IF = 0.9) had significant impacts on the
concentration of heavy metals in SD. Pb and As were in the first quadrant, which contributed to the
potential factors of DO and COD with their response values to the heavy metals greater than 0. Zn was
in the third quadrant, which contributed to the potential factors of TP, NH3-N, and TN. In contrast,
NH3-N had the largest influence on Zn, while TP had the smallest. The arrow direction of COD was
opposite to that of Cd and Cu and the included angle was obtuse, indicating that there was a negative
correlation between them, but it was not significant (Figure 4a).

Figure 4. The ordination biplot based on RDA of the relationships among the water quality parameters
and heavy metals during the flood (a), post-flood (b) and pre-flood (c) seasons. Positive correlations
were represented by red and blue arrows in the same direction, and the projected length between two
arrows was the degree of their correlation.

The first two axes explained 96.89% of variation in water quality data. Among the water quality
parameters, DO (IF = 3.2), COD (IF = 1.8) and TP (IF = 1.0) had significant influences on the content of
heavy metal elements in SA. Hg and Cu were in the first and fourth quadrant, respectively; TP, TN,
and COD may have influenced Hg, among which TP had the most significant influence. The Zn was
located in the second quadrant and the Cr, Cd, As in the third quadrant, DO and NH3-N had certain
potential influences on them, among which DO and NH3-N had the most significant influences on Cr
and As, respectively (Figure 4b).

The results show that the first two axes explain 86.81% of variation in water quality. COD (IF = 1.8),
DO (IF = 1.3), TN (IF = 1.3) had significant impacts on the content of heavy metal elements in SB.
The Zn and As were in the first quadrant and the Cu and Cr in the fourth quadrant; TP, TN, COD and
NH3-N may have influenced them. TP had the most significant impact on As and COD had a greater
impact on these heavy metal elements. The Hg and Pb were in the fourth quadrant DO influenced
them and Hg was relatively affected by DO (Figure 4c).

Part water quality parameters and heavy metals concentrations were correlated with each other,
may indicate a common origin of pollutant. Correlations between metals may reflect their common
source and similar migration behavior [45]. Previous research results indicate that reduced river flows
and increased pollution values and agriculture-driven water depletions have caused a critical situation
in water quality of the downstream Yellow River [24,54]. The wetland water in SB is rich in heavy
metals and the release of heavy metals can change the physical conditions of freshwater environments,
threatening aquatic organisms and reducing the richness and diversity of benthic species [73,74].
However, studies of the relationship between water chemical parameters and heavy metal content are
less frequent. We showed that there were diverse potential relationships between multiple factors,
that sources of various pollution types may be similar. Among them, DO had a great influence on
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heavy metal concentrations. DO concentration is an essential parameter that maintains the equilibrium
of aquatic ecosystems. It is commonly used to assess water resource quality. Generally, a high DO
concentration in the natural state indicated a better water state [55,56]. Prior research had shown DO
exhibited weak negative correlations with the heavy metals, proving that it could not be the potential
factors of influence on the heavy metals in natural river [45]. In contrast, because artificial oxygen
pumps raised wetland water DO concentration in our study area, DO had potential positive influences
on heavy metals including Pb, As, Cr, Cd and Hg in different hydrological seasons, indirectly proving
that heavy metal pollution is caused by human interference. The effects of environmental parameters
on wetland habitats are significant [12]. High concentrations of heavy metals in the surrounding
environment can result in reduced relative abundance and diversity of organisms by affecting the
balance of the food web, resulting in a considerable potential risk to the wetland ecosystem [75].
The lack of necessary infrastructure and proper management caused environmental pollution at the
study region [62] and our study can provide suggestions for water treatment and management.

4. Conclusions

The mean Iwq value was highest and lowest during the flood and pre-flood seasons respectively.
However, the mean HPI value was lowest in the flood season and highest in the pre-flood season.
The excessive Iwq value may be due to the pollution of agricultural and domestic wastewater. The main
reason for the excessive HPI value may be the small water volume in the Yellow River and the low
precipitation in study area, which lead to slow flow of wetlands water and the deposition of heavy
metal elements.

There were significant spatiotemporal differences in water quality parameters and heavy metal
concentrations in wetlands along the middle and lower Yellow River. TN, COD, Cu, and Cd explain
the spatiotemporal changes of water body status. The spatiotemporal difference of water quality
parameters may be mainly caused by the discharge of agricultural and domestic sewage around the
sample sites. Excepting Hg, the heavy metals likely originate from human sources (mainly agricultural
influence) and the seasonal difference of heavy metal concentrations was caused by different degrees
of human activity across the year. Due to human disturbance and a decrease in runoff from the
Yellow River, Hg element was deposited in wetland waters during the pre-flood season. During
flood season, the affected area with hanging river was seriously polluted and the pollutants may be
accumulated mainly through natural factors (the Yellow River lateral infiltration mechanism) [76].
The artificial wetlands were seriously polluted during the post-flood and pre-flood seasons. Sites along
belt transect #03 were divided into a cluster with serious pollution, indicating that this belt transect
was seriously polluted.

There was a potential correlation between the water quality parameters and heavy metal elements,
but their mean concentration was distributed in reverse during different hydrological season. Among
them, dissolved oxygen had a great influence on heavy metal concentrations. There were diverse
potential relationships between multiple factors, suggesting that sources of various pollution types
may be similar.

Author Contributions: Z.H. conceived and designed this research; Q.Z. and S.D. also contributed to research
idea. Z.H. performed the research and analyzed the data and wrote the paper. Q.Z. and S.D. helped build the idea
further and offered critical editing support. J.C., L.P., S.W., Y.H. took part in the experiment. G.L. offered editing
support. All authors have read and agreed to the published version of the manuscript.

Funding: This study was founded by the National Natural Science Foundation of China (41771202, U1804119,
41971229), the Science and Technology Project of Henan Province (192102310304), and the 2019 Young Backbone
Teachers Foundation from Henan Province (2019GGJS030).

Acknowledgments: The authors would like to thank Xunling Lu, Guofu Liang, Qiongqiong Kang, Xiaoyu Ji,
Yapeng Ding for they help when the sampling. We would like to express our sincere thanks to the anonymous
reviewers. Their insightful comments were helpful for improving the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.



Sustainability 2020, 12, 1300 16 of 19

Appendix A

We added the more detailed characterization of environmental settings of the studied wetland in
Table A1.

Table A1. The location of Xiaolangdi dam and transects.

Transect Number Location Geographic Information Distance to Xiaolangdi Dam

belt transect #01 Wenxian-Gongyi 113◦5′41” to 113◦6′33” E
34◦0′ to 34◦51′ N 70 km

belt transect #02 Yuangyang-Zhengzhou 113◦40′40” to 113◦44′92” E
34◦54′8” to 35◦0′21” N 140 km

belt transect #03 Yuangyang-Zhongmu 114◦8′7” to 114◦12′10” E
34◦51′34” to 34◦59′58” N 190 km

belt transect #04 Fengqiu-Kaifeng 114◦27′36” to 114◦30′22” E
34◦51′43” to 34◦57′54” N 230 km

belt transect #05 Changyuan-Lankao 114◦30′52” to 114◦41′6” E
34◦50′58” to 34◦57′34” N 260 km
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