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Simple Summary: Water is a requirement for life on Earth; loss of free water within the body or
cell almost always leads to death. However, in several invertebrate lineages, some species can
tolerate desiccation by entering an ametabolic state known as anhydrobiosis. Here, we review recent
advances in our understanding of the molecular mechanisms and genomic evolution underpinning
anhydrobiosis. We then propose several perspectives for further improving our understanding
of anhydrobiosis.

Abstract: Anhydrobiosis, an ametabolic dehydrated state triggered by water loss, is observed in
several invertebrate lineages. Anhydrobiotes revive when rehydrated, and seem not to suffer the
ultimately lethal cell damage that results from severe loss of water in other organisms. Here, we review
the biochemical and genomic evidence that has revealed the protectant molecules, repair systems,
and maintenance pathways associated with anhydrobiosis. We then introduce two lineages in which
anhydrobiosis has evolved independently: Tardigrada, where anhydrobiosis characterizes many
species within the phylum, and the genus Polypedilum, where anhydrobiosis occurs in only two species.
Finally, we discuss the complexity of the evolution of anhydrobiosis within invertebrates based on
current knowledge, and propose perspectives to enhance the understanding of anhydrobiosis.

Keywords: anhydrobiosis; tardigrades; chironomids; genomic evolution

1. Anhydrobiosis—A State with No Visible Signs of Life

Life on Earth depends on aqueous biochemical reactions [1], and approximately 70%
of an animal’s body is composed of water [2]. Loss of water can cause incremental damage
to biological systems at the cellular and tissue level. Therefore, most organisms take pre-
cautions against water loss by maintaining extra water or preventing water evaporation,
depending on circumstances. However, several invertebrates have evolved a peculiar
method of tolerating water loss. They can enter an almost completely dehydrated state
when facing environmental desiccation and yet revive when rehydrated. This phenomenon
is referred to as anhydrobiosis, a latent state of life induced by desiccation, first observed
by Leeuwenhoek in 1702 [3]. Anhydrobiosis is considered to be a form of “cryptobiosis”,
which is defined as “the state of an organism when it shows no visible signs of life and when its
metabolic activity becomes hardly measurable or comes reversibly to a standstill” [4]. Metabolism is
considered integral to life on earth, and hence cryptobiosis has been called a “third state of
life” [5], alongside “life” and “death”. Today, anhydrobiosis has been observed in multiple
invertebrate lineages, e.g., brine shrimps, bdelloid rotifers, nematodes, midges and tardi-
grades, as well as in the other kingdoms of Plantae, Fungi and Prokaryota (Table 1) [3–10].
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Anhydrobiosis capabilities during life cycles vary between species; there are species that
can undergo desiccation throughout their whole life cycle, whereas others can do so in a
particular stage (i.e., eggs, larvae; Table 2) [11].

Table 1. Survival of anhydrobiotes under various desiccation conditions.

Species Desiccation
Condition Preconditioning Survival Rate Reference Notes

Fungi

Saccharomyces
cerevisiae

Freeze-dryer for
3 days

2-week culture for
stationary phase

~100% + 500 mM
trehalose/~10% +
0 mM trehalose

Gadd et al., 1987 [12]
Intracellular trehalose was

about 300 mM in the
stationary phase

Saccharomyces
cerevisiae Air, 30 ◦C, ~16 h 72 h culture (late

postdiauxic phase) ~50%, BY4741 Ratnakumar and
Tunnacliffe, 2006 [13]

Intracellular trehalose was
about 140 mM at the late

postdiauxic phase

Saccharomyces
cerevisiae 60% RH, 23 ◦C, > 48 h 5-day culture to

saturation
<20%, WT, 2 days

dry
Tapia and Koshland, 2014

[14]

Yeast had only 600 µg/mL
trehalose after 5-day culture.

Half of the trehalose
degraded during the 30-day
desiccation period, and more

than 90% by 180 days

Saccharomyces
cerevisiae 60% RH, 23 ◦C, >48 h -

~1%,
TDH3pr-AGT1,
+1% trehalose

Tapia et al., 2015 [15]

AGT1 can transport
extracellular trehalose. In 1%

trehalose, intracellular
trehalose was 157 µg/mL

Nematode

Aphelenchus
avenae

80% RH, 24 h; 40%
RH, 24 h; 0% RH,

24 h
97% RH, 24–72 h ~50% Higa et al., 1993 [16]

About 7% trehalose of dry
weight under all

preconditioning conditions

Caenorhabditis
elegans

98% RH/23%
RH/0% RH 98% RH, 4 days ~100%/~100%/~10%,

daf-2 Erkut et al., 2011 [17]
Intracellular trehalose was

about 400 mM after
preconditioning

Caenorhabditis
elegans

98% RH/23%
RH/0% RH - ~100%/~0%/~0%,

daf-2 Erkut et al., 2011 [17]
Intracellular trehalose was

about 80 mM without
preconditioning

Rotifer

Adineta vaga 22 ◦C, 7 days In a container at
22 ◦C, 24 h

~80%,
adults/~60%,

juvenile/>80%, egg
Ricci, 1998 [18]

Philodina
roseola

Air (~33% RH), RT
(~23 ◦C), 3 days 100% RH, 2 days ~75%, well fed Lapinski and Tunnacliffe,

2003 [19]

Survival rate without
preconditioning was less

than 1%

Insect

Polypedilum
vanderplanki

<5% RH, RT
(24–26 ◦C), >48 h - 100% Watanabe et al., 2002 [20] Trehalose was

35 µg/individual at 48 h

Polypedilum
vanderplanki 5% RH

100% RH for first
day, 76% RH for

the second day, and
5% RH for a third

day

91% Sakurai et al., 2008 [21]

The survival rate without
preconditioning was 0%.

Trehalose: 277 µg/mg dry
weight with preconditioning;

4.2 µg/mg without
preconditioning

Polypedilum
vanderplanki,

Pv11

<10% RH, 25 ◦C,
+600 mM trehalose,

>48 h

Incubation with
600 mM trehalose,

48 h
16% Watanabe et al., 2016 [22]
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Table 1. Cont.

Species Desiccation
Condition Preconditioning Survival Rate Reference Notes

Tardigrade

Ramazzottius
varieornatus

0% RH, 25 ◦C,
10 days

85% RH, 25 ◦C,
24 h

~100%, egg,
juvenile, and adult Horikawa et al., 2008 [23]

Hypsibius
exemplaris

10%, RH 18 ◦C,
2 days

95% RH, 18 ◦C,
4 days ~100% Kondo et al., 2015 [24]

For rehydration, specimens
were transferred to 95% RH

for 1 day
Hypsibius
exemplaris

40% RH, 24 h; 22%,
7 days, 20 ◦C

92% RH, 20 ◦C,
16 h ~2% Poprawa et al., 2022 [25]

Hypsibius
exemplaris

40–50% RH, 72 h;
incubator,7 days,

20 ◦C
- ~50% Poprawa et al., 2022 [25]

Paramacrobiotus
metropolitanus

10% RH, 22 ◦C,
2 days

95% RH, 22 ◦C,
48 h >60% Hara et al., 2022 [26]

Trehalose was 70 ng/µg
protein after 2 days

desiccation
Milnesium

tardigradum
50–62% RH, 25 ◦C,

1 h - ~90% Horikawa and Higashi,
2004 [27]

Echiniscoides
sigismundi

62 or 39% RH,
22–23 ◦C, 48 h - ~99% Hygum et al., 2016 [28]

Richtersius
coronifer

65% RH, 23 ◦C,
12 days - ~40% Jönsson et al., 2001 [29]

Table 2. Comparison between chironomid and tardigrades showing the current understanding of
their anhydrobiotic mechanisms.

Species Life Stage with
Desiccation Tolerance

Trehalose
Accumulation IDP Genome Size

Regulation of
Anhydrobiotic

Genes

Polypedilum
vanderplanki Only larva 35 µg/individual LEA 104 Mb

Expression
induction through
HSF and NFY-C

Ramazzottius
varieornatus Embryo, juvenile, adult 300 µM/sample

CAHS, SAHS,
MAHS, LEAM,

Dsup
56 Mb Constitutive

expression

Hypsibius
exemplaris Adult (gene lost)

CAHS, SAHS,
MAHS, LEAM,

Dsup

104 Mb
Regulation by

AMPK and
PP1/PP2A(Hypsibius

dujardini)
Paramacrobiotus
metropolitanus Adult 70 ng/µg

protein
CAHS, SAHS,
MAHS, LEAM 170 Mb -

In addition to tolerating desiccation, organisms in the anhydrobiotic state can with-
stand exposure to other extreme chemical and physical conditions, a phenomenon known
as cross-tolerance [30,31]. For example, tardigrades can tolerate low to high temperatures
(−273–100 ◦C) [23,32–35], high pressure (7.5 GPa) and the vacuum of space [36–39], organic
solvents [40], copper ions [41], salinity [42,43], hydrogen peroxide [44], and exposure to ul-
traviolet [45–47] and gamma [23,47–56] radiation. Interestingly, active tardigrade specimens
can tolerate a high dose of gamma irradiation comparable to levels they withstand in the
anhydrobiotic state (over 5000 Gy), suggesting the existence of a highly efficient DNA pro-
tection and repair system. Similar observations have been made in other anhydrobiotes,
suggesting this cross-tolerance may be a common feature of anhydrobiotic organisms.

When organisms face severe water loss, damage occurs at various levels, affecting
organ systems, tissues, cells and biomolecules [57–59]. For example, the exponential
increase in ion concentration causes intense osmotic stress and oxidative stress, which
can cause irreversible disruption of the lipid bilayer and protein structure, both of which
rely on hydrophobic/hydrophilic interactions. This results in membranes becoming leaky
and proteins partially unfolding, leading to aggregation. In addition, the stresses imposed



Insects 2022, 13, 557 4 of 21

by water loss may inhibit the activity of maintenance and repair pathways, negatively
impacting the ability of the cell to remedy any damage to vital systems. Therefore, to
achieve anhydrobiosis, a method of protecting and/or repairing biomolecules is required
that also involves halting metabolism in the dry state and an efficient restart of cellular
activity after rehydration.

Here, we review such molecular mechanisms of anhydrobiosis, from protective
molecules to universal stress resistance pathways, to the underlying genomic evolution
that has occurred in anhydrobiotes. We then introduce the evidence that has accumu-
lated in the chironomid Polypedilum vanderplanki (Hinton, 1951) and phylum Tardigrada,
where there are differences in anhydrobiotic machinery and protective molecules acquired.
Pol. vanderplanki and its relative Polypedilum pembai (Cornette, 2017) are the only insects cur-
rently known to be capable of anhydrobiosis, which they achieve using canonical protective
mechanisms, whereas anhydrobiosis has been observed throughout the phylum Tardigrada,
where lineage-specific protein families seem to be important. Based on current knowledge,
we discuss the peculiar enigma of anhydrobiosis and its molecular mechanisms.

2. Candidate Protective Molecules in Anhydrobiosis, from Trehalose to Intrinsically
Disordered Proteins
2.1. “Traditional” Protective Molecules Accumulating in Anhydrobiotes

The current framework of cellular protection during anhydrobiosis in animals focuses
on two elements: trehalose and late embryogenesis abundant (LEA) proteins. Both have
been discovered as molecules whose accumulation is induced by desiccation, and are
believed to contribute to anhydrobiosis.

Trehalose, a non-reducing disaccharide composed of two glucose molecules, is one of
the most well-known compounds that contributes to the stabilization of biomolecules dur-
ing desiccation and freezing, somewhat controversial in cells [60–63]. Several anhydrobiotic
organisms such as yeast, nematodes, and Pol. vanderplanki accumulate trehalose to about
20% of their dry mass and rapidly degrade it upon rehydration (see Table 1) [12,20,64].
Since the 1970s, trehalose has been correlated with the survival of desiccation. Two hy-
potheses have been proposed for the molecular function of trehalose in cellular protection:
vitrification and water replacement [21,65]. The vitrification model suggests that the glassy
state formed by high concentrations of trehalose can prevent deleterious interaction be-
tween biomolecules. The water replacement hypothesis proposes that the O-H groups in
trehalose form hydrogen bonds with hydrophilic groups (e.g., the phosphate head groups
in phospholipids), in the same manner as water forms hydrogen bonds with biomolecules
in bulk water, similarly preventing destructive interactions. These two hypotheses are
not mutually exclusive, but whether either is, or both are, necessary for anhydrobiosis
remains controversial.

A requirement for intra- and extracellular trehalose has been demonstrated in the bud-
ding yeast Saccharomyces cerevisiae, which accumulates approximately 400 mM trehalose in-
side the cell during the stationary phase and achieves 100% survival after lyophilization in a
medium containing 500 mM trehalose [12]. Genetic studies show that the reduction in intra-
cellular trehalose due to the disruption of the trehalose-6-phosphate synthase (TPS) gene at-
tenuates tolerance of desiccation in the dauer larvae of the nematode Caenorhabditis elegans,
and also in S. cerevisiae over long periods in the dry state, although trehalose is less impor-
tant for short-term desiccation [13–15,17]. Additionally, approximately 16% of the Pv11 cell
line (established from Pol. vanderplanki embryos) was found to survive desiccation after
pre-incubation in a medium containing 600 mM trehalose [22,66]. This situation mimics
the high concentration of trehalose dispersed throughout the whole body by the trehalose
transporter 1 (TRET1) in Pol. vanderplanki larvae during entry into anhydrobiosis [67].
Apart from the possible protective functions discussed above, trehalose is also suggested to
function as an energy source for successful recovery from anhydrobiosis [68].

On the other hand, tardigrades and bdelloid rotifers show no or minimal accumulation
of trehalose during desiccation [19,69,70]. It has been demonstrated in the tardigrade
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Richtersius coronifer (Richters, 1903) that trehalose levels increase to approximately 2%
during desiccation [69]. In addition, a comprehensive survey of Tardigrada showed that
heterotardigrade species accumulated less than 0.05% of their dry weight as trehalose and
less than 0.15–1% in eutardigrades (e.g., Macrobiotus tonollii (Ramazzotti, 1956), 1.65 ng/µg
protein; a six-fold increase compared to the active state) [70,71]. High trehalose levels
(70 ng/µg protein, percentage of dry weight not reported) were reported in Paramacrobiotus
metropolitanus (Sugiura, Matsumoto and Kunieda, 2022) [26,72], but this is still less than
reported in Pol. vanderplanki (see Table 1). Moreover, no substantial accumulation of any
sugars was observed in a metabolomics study of the tardigrade Ramazzottius varieornatus
(Bertolani and Kinchin, 1993) [71]. Taken together with the fact that several tardigrades
have lost the genes for trehalose synthesis [26,73], it has been hypothesized that tardigrades
may use trehalose partially in combination with other molecules, if at all, to achieve
anhydrobiosis [74,75]. Trehalose might also be used in some species as a ‘safe’ means of
storing energy: most sugar molecules, such as glucose, have a reducing group that can
react with other biomolecules, but conversion to trehalose, which is non-reducing, prevents
this reactivity while securing a carbohydrate energy source for use during recovery from
anhydrobiosis or other stress conditions.

LEA proteins [76] have been of interest since the early molecular studies on anhydro-
biosis machinery. This protein family is classified into seven groups [77,78] and was first
identified in plant seeds, comprising up to 4% of total protein [79]. The LEA proteins found
in the animal kingdom are mainly from group 3, as first reported in the entomopathogenic
nematode Steinernema feltiae (Stanuszek, 1974) [80]. Orthologs in anhydrobiotic animals,
such as bdelloid rotifers, brine shrimps and Pol. vanderplanki, as well as other nematodes,
were identified among the genes induced by desiccation [81–86]. LEA proteins in aqueous
solution are highly hydrophilic and unstructured, and remain soluble even after heat treat-
ment; however, they can form amphipathic alpha-helices under water-deficit conditions,
which is mimicked by tetrafluoroethylene (TFE) treatment in vitro. The alpha-helix is
assumed to interact with the hydrophilic surface of proteins or lipids to prevent structural
damage upon desiccation, which is referred to as the “molecular shield model” [77,87]. Indeed,
LEA4 protein from Pol. vanderplanki prevents protein from aggregation caused by desicca-
tion [88]. Moreover, the exogenous expression of LEA proteins in non-anhydrobiotic cells
can confer moderate tolerance to hyperosmotic conditions [85,87,89,90]. Not only cytosolic
LEA proteins, but also those localized to the mitochondria, e.g., RvLEAM (R. varieornatus)
and AfrLEA3m (Artemia franciscana; Kellogg, 1906), can improve hyperosmotic tolerance in
human cells [86,89]. These findings emphasize the contribution of LEA proteins to osmotic
stress tolerance.

2.2. Abundant Proteins in an Anhydrobiotic Tardigrade Are Lineage-Specific Intrinsically
Disordered Proteins

Unlike in other anhydrobiotes, LEA proteins are not extremely highly expressed nor
accumulated to high levels in tardigrades, and therefore cannot be considered a major
factor in tardigrade anhydrobiosis. During the quest to identify substitutes for trehalose
and LEA proteins, methods to identify proteins with features similar to LEA proteins
identified two highly heat-soluble multi-copy tardigrade-specific protein families: cytoplas-
mic abundant heat-soluble (CAHS) and secretory abundant heat-soluble (SAHS) proteins.
These were among the most abundant proteins in the heat-soluble fraction extracted from
R. varieornatus [91]. These proteins were named based on the subcellular localization of
GFP-fused proteins in human cells; thus, CAHS proteins were localized to the cytoplasm
or nuclei, while SAHS proteins were secreted into the culture medium. Although these
two protein families do not show sequence similarity with canonical LEA proteins, they
both form alpha-helical structures under water-deficit conditions or upon TFE treatment,
as reported for LEA proteins. Moreover, since 2021, multiple studies have reported the
formation of higher-order structures by CAHS proteins [92–96]. These studies argue that
purified recombinant CAHS proteins form fiber-like aggregates or gel-like lumps at high
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concentrations, as is assumed to occur with the onset of desiccation. This phenomenon
was also observed in bacteria and human cells expressing CAHS protein. This resembles
what Tunnacliffe et al. had speculated while discussing the functional role of LEA proteins
in 2005: “If LEA proteins are able to form α-helical coiled coils on drying, they may also form
higher-order supramolecular assemblies similarly to the way keratins, neurofilament proteins, and
lamins, for example, form intermediate filaments” [83]. Boothby et al. demonstrated that several
CAHS proteins confer desiccation tolerance on bacteria and yeast, and the RNAi-mediated
knock-down of CAHS transcripts in H. exemplaris reduces viability on recovery from anhy-
drobiosis [97]. This hypothesis is promising and intriguing, and thus the requirement for
higher-order structures to form, rather than just the expression of CAHS proteins, should
be validated in further analysis.

The successful identification of CAHS and SAHS proteins prompted a search for
hydrophilic proteins with different subcellular localizations, which revealed two examples:
tardigrade-specific mitochondrial abundant heat-soluble (MAHS) protein and canonical
LEAM [86]. Both are highly expressed in tardigrades and, when expressed in human cells,
localize to the mitochondria and confer improved osmotic tolerance. The anti-osmotic
mechanism of MAHS protein has yet to be clarified, but the existence of two different
heat-soluble proteins localizing to the mitochondria may indicate some functional spe-
cialization. An example of such specialization would be the heat-resistant obscure (Hero)
proteins identified in Drosophila and human cell lines [98]. These proteins stabilize other
proteins under stress conditions; however, they seem to prefer certain proteins over others.
We speculate that MAHS and LEAM proteins may also show such “preferences” when
protecting mitochondria. Further studies on protective specialization should focus not only
on the localization of each protein within the mitochondria, but also on the basic properties
of the proteins and the molecules being protected.

Furthermore, based on the hypothesis that high tolerance to radiation in the active
state may be enabled by a protein that protects genomic DNA, the proteomic analysis
of nuclei from R. varieornatus identified the intrinsically disordered damage suppressor
(Dsup) protein [99]. As hypothesized, the Dsup protein prevents DNA damage induced by
X-ray irradiation and H2O2 in cultured cells. Surprisingly, the Dsup protein binds to free
DNA and/or chromatin and suppresses DNA damage by H2O2 in vitro [100]. The binding
of Dsup to chromatin should provide insights into the protection mechanism of Dsup, and
whether Dsup interferes with transcription and replication. A mammalian-specific nuclear
protein, protamine, has been reported to replace histone proteins in sperm and possibly
protect genomic DNA from cellular stress by condensing chromatin [101]. The similarity
between Dsup and protamine may point to universal mechanisms that protect the genome
from damage.

The proteins introduced above, e.g., LEA and CAHS proteins, are intrinsically dis-
ordered proteins (IDPs). In general, IDPs can have novel functions that might not be
available to structured proteins, particularly under stress conditions; for example, the
formation of condensates with RNA and/or other proteins in response to intracellular
stress promoted by liquid–liquid phase separation (LLPS), which is thought to play an
important protective role in anhydrobiosis [102]. It has been hypothesized that IDPs do not
ordinarily form secondary structures, but they may do so under certain unusual conditions
(i.e., extremes of pH, temperature and ion concentration, or due to changes in subcellular
localization, etc.), resulting in novel interactions with other biomolecules. For example, the
LEA6 protein of the brine shrimp A. franciscana undergoes LLPS during desiccation and
maintains a vesicle-like structure in the dry state [102]. The IDP anhydrin, identified in the
anhydrobiotic nematode Aphelenchus avenae (Bastian, 1865), has been reported to have both
chaperone and endonuclease functions [103]. In future studies on IDPs, the complexity
of their functions and under what conditions they function should be investigated, con-
sidering the possibility that an IDP might be multifunctional across several phases of the
dehydration–rehydration cycle.
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3. Conserved Cellular Maintenance and Repair Pathways Contributing
to Anhydrobiosis

The utilization of the unique systems that enable anhydrobiosis is fascinating and often
attracts attention, but anhydrobiosis machinery also comprises other elements. It is likely
that protection by these proteins is not perfect; thus, damage to DNA and protein has been
observed in specimens after rehydration, possibly due to reactive oxygen species (ROS)
produced during the anhydrobiosis cycle [104–106]. Therefore, maintenance and repair
mechanisms common to almost all living organisms are probably an essential component
of anhydrobiosis machinery and help to restore cellular functions after rehydration.

The importance of antioxidant pathways has been emphasized in molecular [106–108]
and omics analysis on anhydrobiosis [73,99,109–117]. The expression of superoxide dis-
mutase (SOD), glutathione-S transferase (GST), and catalase is induced during desiccation
in the tardigrade Hypsibius exemplaris (Gąsiorek, Stec, Morek and Michalczyk, 2018). Sim-
ilarly, SOD, catalase, thioredoxin, and peroxidase are upregulated during desiccation in
Pol. vanderplanki [113,118]. The importance of enhanced antioxidant capability in anhydro-
biosis is emphasized by the expansion of relevant gene families in these genomes [73,99,109].
Interestingly, a novel manganese-dependent peroxidase family conserved widely through-
out Tardigrada, as well as a catalase suggested to be of bacterial origin, have been identified
in tardigrades [99,110]. However, it is unclear how and at what stage of the anhydrobiosis
cycle ROS are generated (e.g., early and late entry, anhydrobiosis, early and late recovery),
although it seems likely that the balance between the generation and detoxification of ROS
is disrupted during desiccation due to perturbations in the cellular environment and the
loss of water affecting the functionality of antioxidants.

ROS that evade antioxidant systems will damage cellular biomolecules, particularly
DNA and proteins. DNA damage has been observed in chironomids, rotifers and tardi-
grades, and the damage incurred during anhydrobiosis was found to be of a similar level as
that found in active chironomid larvae exposed to 70 Gy of heavy ion radiation [118–121].
Gene expression analysis has shown that many DNA repair pathways are induced in
anhydrobiotes [73,116,118]. While we speculate that the Dsup protein can protect genomic
DNA in R. varieornatus, DNA repair is clearly crucial in this species, as the MRE11 gene,
whose protein participates in double-strand break repair, has been duplicated during evo-
lution. These data underline the importance of DNA repair in anhydrobiosis. Furthermore,
heat shock proteins (HSPs) are major contributors to the repair of protein damage. HSPs are
known to be induced not only by heat treatment, but also by various other cellular stresses,
e.g., UV radiation, osmotic stress and oxidative stress. They act as molecular chaperones
to help with protein assembly and refolding. In tardigrades, it has been reported that
HSP70 expression is higher in the rehydrated active state than before desiccation [122,123].
In contrast, in Pol. vanderplanki, the expression of several HSPs (e.g., HSP90s and HSP70s)
is induced by desiccation [124]. Since HSPs are fundamental to the maintenance of cellular
function, it is difficult to determine whether these proteins are a core element of anhy-
drobiosis machinery or part of a pathway that is activated as a result of damage caused
by desiccation.

Thus, an important question concerning these proteins is whether they are regulated
as part of anhydrobiosis machinery or whether they are induced by the detection of stress
or damage in cellular molecules as a part of the normal cellular response. One way to
answer this question is to identify how these pathways are regulated. Several signaling and
transcription factors have been implicated in the regulation of anhydrobiosis machinery so
far, including heat shock factor (HSF) and nuclear transcription factor Y subunit gamma-like
(NF-YC) in Pol. vanderplanki [125,126], and AMP-activated protein kinase (AMPK), protein
phosphatase 1 (PP1), and protein phosphatase 2A (PP2A) in H. exemplaris [24,127]. Trehalose
secretion from fat body tissue is also seemingly a key signal of systemic anhydrobiosis in
Pol. vanderplanki [66,67]. Although the molecular components of these two systems seem
to differ, a comparison among anhydrobiotes might answer how these components are
prepared, located and assembled, and how anhydrobiotic machinery is established.
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4. Examples of Genomic Evolution Underlying Anhydrobiosis at Species (Pol.
vanderplanki) and Phylum Levels (Tardigrada)

Pol. vanderplanki and tardigrades are fascinating subjects for the study of anhydrobiosis;
for both, a great deal of molecular data have accumulated in recent decades, as described
in the previous sections. Two Polypedilum species (Pol. vanderplanki and Pol. pembai) are
the only insects known to be capable of anhydrobiosis, and studies on Pol. vanderplanki
have revealed the utilization of canonical mechanisms (e.g., trehalose and LEA proteins) to
achieve anhydrobiosis, whereas tardigrades exploit novel proteins instead. Figure 1 shows
the complexity of the evolution of anhydrobiotic capability, as well as the conservation of
molecular mechanisms in tardigrades. In this section, we focus on these two invertebrate
lineages to consider how anhydrobiotic capabilities have evolved.
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anhydrobiotic and non-anhydrobiotic capability, respectively.

4.1. Tardigrada: A Phylum Showing Complicated Evolution of Anhydrobiosis

The phylum Tardigrada comprises approximately 1,400 tardigrade species which
are found in various environments including terrestrial, freshwater, and marine habi-
tats [128,129]. These species are classified into two classes (see Figure 1): Eutardigrada, of
which most species of both Apochela and Parachela orders are anhydrobiotic, and Hetero-
tardigrada, which are further separated into the non-anhydrobiotic marine Arthotardigrada
and mostly anhydrobiotic Echiniscoidea orders. A third class, Mesotardigrada, has been
proposed, but it is considered nomen dubium following recent sampling efforts [130,131].
The common tardigrade ancestor is hypothesized to be of marine origin [132], suggesting
that anhydrobiosis has been acquired twice, i.e., once in each lineage (Eutardigrada and
Heterotardigrada), possibly due to selective pressure resulting from environmental fluctua-
tion during terrestrialization [133]. Eutardigrada and Heterotardigrada are hypothesized
to have diverged around 540–600 MYA [134,135], and Apochela and Parachela within
Eutardigrada around 433 and 474 MYA [134], suggesting that the terrestrialization and ac-
quisition of anhydrobiosis in Eutardigrada occurred during this 68–167-million-year period.
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Most molecular studies have focused on Eutardigrada species (e.g., Milnesium tardigradum
(Doyère, 1840), R. varieornatus, and H. exemplaris, formerly known as Hypsibius dujardini
(Doyère, 1840) [136]), for which rearing systems have been established [23,137,138]. Initial
omics studies in tardigrades were conducted in Mil. tardigradum, a terrestrial anhydrobiotic
Apochela species [139–145], and led to the first mechanistic model of anhydrobiosis in
tardigrades [144].

It is known that anhydrobiotic capabilities vary between tardigrades species (Table 1).
Thus, while marine heterotardigrades are thought to be incapable of anhydrobiosis (i.e.,
Tanarctus (Renaud-Debyser, 1959), Batillipes (Richters, 1909)), some non-marine species
can survive immediate desiccation (i.e., R. varieornatus [23,146], Mil. tardigradum [27,147],
and Echiniscus testudo (Doyère, 1840) [147]), while others must be desiccated gradually
(i.e., H. exemplaris [24,136], Pam. metropolitanus). For example, R. varieornatus can directly
enter anhydrobiosis at low relative humidity (37% RH) [23,148], whereas H. exemplaris
requires 48 h preconditioning [24]. The inhibition of transcription and translation during
preconditioning prevents a successful transition to anhydrobiosis [24], suggesting that de
novo gene expression and/or production of protectants are essential in the latter species.
Such requirements may be caused by differences in their habitats: R. varieornatus was
isolated from moss on a bridge susceptible to repeated desiccation, whereas H. exemplaris
was isolated from a lake. Additionally, several eutardigrade species (i.e., Isohypsibius myrops
(Du Bois-Reymond Marcus, 1944) [149], Thulinius ruffoi (Bertolani, 1982) [150,151]) have
lost their ability to undergo anhydrobiosis, which implies these species lack anhydrobiosis
genes or the pathways that regulate these genes.

To decipher the complex evolution of tardigrade anhydrobiosis, a comprehensive
comparative analysis based on genome information has been conducted between the two
closely related tardigrades mentioned above, R. varieornatus and H. exemplaris, which show
distinct anhydrobiotic entry modes [73,99]. The genomes of these species differ in size:
R. varieornatus has a compact genome of 55.83 Mb, while that of H. exemplaris is 104.16 Mb [99].
A quantitative analysis of genome content indicates that approximately 80% of this nearly
two-fold difference in size (38 Mbp out of 48.33 Mbp) is caused by an increase in the total
length of repetitive elements (17 Mb) and in introns (21 Mb) in H. exemplaris, and not by
whole-genome duplication. This difference was also observed between anhydrobiotic and
non-anhydrobiotic bdelloid rotifers [152,153]. The gene content of H. exemplaris and R.
varieornatus showed many similar characteristics in terms of the extensive duplication of
antioxidative stress genes (e.g., SOD), loss of the peroxisomal oxidative pathway, stress
response pathways (e.g., Hif1a, mTORC1), several genes within the DNA repair and telomere
maintenance pathways, and the conservation of tardigrade-specific anhydrobiosis genes
(i.e., CAHS, SAHS, MAHS, LEAM, and Dsup) [73,99,154,155]. On the other hand, gene
expression analysis has indicated a difference between the two species; many tardigrade-
specific anhydrobiosis genes are constitutively highly expressed in R. varieornatus, but
are highly induced from basal levels in H. exemplaris [73,99]. These data suggest that the
different modes of anhydrobiosis in these species are not the result of different genome
content, but the differential expression of anhydrobiosis genes. Determining the pathways
that regulate the expression of unique proteins and canonical maintenance pathways will
provide insights into the genomic evolution of anhydrobiosis; in particular, a comparison of
species that constitutively express anhydrobiotic genes and those that have secondarily lost
the ability to enter anhydrobiosis may be of interest.

To expand our knowledge of genomic evolution within the phylum Tardigrada,
the genome of a species within the class Heterotardigrada was recently reported [109].
The genome of Ech. testudo, a heterotardigrade that is capable of immediate transition
into anhydrobiosis, revealed a more complicated picture of anhydrobiosis mechanisms
in tardigrades, as none of the tardigrade-specific proteins identified in R. varieornatus
were conserved. Given the fact that anhydrobiosis was independently acquired in eu-
tardigrades and heterotardigrades, this might be understandable. The screening of highly
expressed heat-soluble proteins identified the Echiniscus testudo abundant heat-soluble
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(EtAHS) protein family as possible analogs of the CAHS protein family [91]; however,
there was no sequence homology between these two families. Similarly, the transcrip-
tome of Echiniscoides sigismundi (Schultze, 1865) (Heterotardigrada) and the genome of
Macrobiotoidea Pam. metropolitanus (Eutardigrada) showed the same conservation pat-
tern (or lack of it) in tardigrade-specific anhydrobiosis genes, supporting the notion of
the independent acquisition of protective proteins unique to tardigrades in these two lin-
eages [26,112]. Further analysis of gene conservation in a wider range of lineages should
help determine which elements of tardigrade anhydrobiosis are common and which are
unique to particular lineages.

Recently, genomic analysis of the Apochela family, which solely consists of Milnesium
species with strong anhydrobiotic capacity, has further added to the complexity of the
evolution of anhydrobiosis in Tardigrada [156]. Although the genome of Mil. tardigradum
was expected to have a gene content similar to Parachela species, only the CAHS proteins
were conserved in Milnesium, indicating that other proteins, e.g., SAHS and MAHS proteins,
may be limited to Parachela. The lack of SAHS and MAHS proteins may imply the existence
of novel proteins or mechanisms that provide complementary functions in Apochela species
able to undergo anhydrobiosis.

4.2. Polypedilum vanderplanki and Polypedilum pembai: The Only Insects Capable
of Anhydrobiosis

It has been estimated that there are nearly 10,000 chironomid species [157,158], making
them one of the most diverse insect families. However, two chironomids, Pol. vander-
planki [8] and Pol. pembai [7], are the only species known within Insecta that can undergo
anhydrobiosis (Figures 1 and 2). Both midges can only enter anhydrobiosis at the larval
stages [8], which represent 3–4 weeks (approximately 75%) of their life cycle [159]. These
species inhabit semi-arid, rocky terrain in Africa [7,160], where they are subjected to des-
iccation in the dry season, such that the emergence of anhydrobiosis would represent
a selective advantage. Polypedilum nubifer (Skuse, 1889), a closely related cosmopolitan
species, is incapable of anhydrobiosis, and therefore anhydrobiosis must have been ac-
quired during the ~50 MYA period when the Pol. nubifer and Pol. pembai–Pol. vanderplanki
lineages diverged [7,114].

To identify genomic loci that are responsible for anhydrobiosis in Pol. vanderplanki,
the draft genomes of Pol. vanderplanki and the cosmopolitan Pol. nubifer were reported
and compared in 2014 [114]. Contrary to observations in tardigrades and bdelloid rotifers,
these two species do not show large genome size differences; in fact, chironomids in
general have a constant genome size of 100–200 Mbp [161]. Comparison between the
Pol. vanderplanki and Pol. nubifer revealed duplications of multiple anhydrobiosis genes
in the former species, i.e., those encoding LEA proteins, HSPs, GSTs, thioredoxins, etc.
Interestingly, the authors identified nine genomic regions heavily enriched in these genes,
which they dubbed Anhydrobiosis-Related Islands (ARIds). By expanding this genome
analysis to the chromosome level, a subsequent study showed that seven of the nine ARIds
were located on chromosome 4 in Pol. vanderplanki. Furthermore, a higher nucleotide
diversity, the loss of synteny blocks with other chironomids, and the accumulation of novel
gene families was also observed on chromosome 4, highlighting the importance of this
chromosome in the evolution of anhydrobiosis in Pol. vanderplanki [162]. Additionally,
a recent preprint described the genome of the anhydrobiotic Pol. pembai, which showed
an independent evolution of ARId loci, harboring the multicopy PIMT gene family [163].
These data provide a fundamental hypothesis to explain the rapid genomic evolution of
anhydrobiosis in Pol. vanderplanki.
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Although only two Polypedilum species are capable of anhydrobiosis within the highly
diverse Insecta, chironomids are found in various terrestrial and aquatic (both freshwater
and marine) environments and have advanced into “niche” environments [164]. Therefore,
there may be general genomic features that allow chironomids to adapt to fluctuating
environments. A recent study reported a Polypedilum sp. as one of the dominant species in
the Paraíba Basi (Brazil) during the extreme drought that occurred from 2012 to 2019 [165],
possibly surviving through mechanisms similar to anhydrobiosis. The Brazilian chironomid
may have a common ancestor with Pol. vanderplanki and Pol. pembai, and thus might
represent a missing link between anhydrobiotic Pol. vanderplanki and non-anhydrobiotic
Pol. nubifer. Information on the genome of this species will be instructive in this regard.
Moreover, examining a wider taxonomic range would reveal whether there is a common
factor, exemplified by chromosome 4 in Pol. vanderplanki, that underlies environmental
adaptation in chironomids.

5. Considerations for Future Development in Anhydrobiosis Research
5.1. Complex Evolution Sometimes Calls for Elaborate Methods

The current research strategy for the dissection of the molecular mechanisms of
anhydrobiosis depends heavily on comparative genomics to identify the key enabling
gene repertoires. Therefore, the correct identification of functional orthologs of genes
related to anhydrobiosis, alongside the basic analysis of genomic evolution, is required.
For example, careful synteny analysis identified a homolog of the Dsup gene, initially
identified in R. varieornatus and not in H. exemplaris by BLAST searches [73], which has
extremely low similarity (bit-score 34.3, E-value = 0.09) to Dsup itself [154]. Although
low conservation at the sequence level has also been observed in IDPs [166], no other
tardigrade IDPs show the same degree of sequence diversity as Dsup. Such sequence
diversity would hinder ortholog detection by sequence matching alone, and therefore
synteny-based analysis has proven powerful in this context. In contrast, an example where
synteny analysis did not work is Pol. vanderplanki chromosome 4. Although most of the
Pol. vanderplanki genome shows synteny with the chromosomes of other mosquitoes, this
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was not the case for the genes on chromosome 4, suggesting extensive genetic turnover and
recombination specific to this chromosome. Indeed, gene clustering analysis and annotation
showed that numerous novel genes have accumulated on chromosome 4, causing the loss
of synteny [162].

Another phenomenon that can confound comparative genomics is horizontal gene
transfer (HGT). Novel gene acquisition by HGT is a rare event in eukaryotes [167] and is
not more frequent in either tardigrades or chironomids than in other invertebrates [73,167].
However, genes encoding, for example, catalase, trehalose metabolic enzymes, UDP gly-
cosyltransferases, and components of the ascorbate synthesis pathway are assumed to
have arisen by HGT in tardigrades [26,73,99]. In chironomids, the multi-copy LEA protein
gene family is hypothesized to result from HGT, with multiple duplications after genome
integration [114], while in anhydrobiotic rotifers, HGT seems to have occurred on a much
larger scale [152,168–170]. These findings suggest that HGT may have played an important
role in the acquisition of anhydrobiosis, making the detection of horizontally transferred
genes essential. However, homology-based HGT detection is prone to false positives,
particularly in newly sequenced genomes, such that a thorough validation using additional
methods is required [167].

In summary, sophisticated methods may be required in some cases, and may need
to be fine-tuned for a more rigorous validation of hypotheses such as those indicated
above. Thorough testing using phylogenetic analysis and additional confirmatory data (i.e.,
transcriptome assembly, protein-based analysis, etc.) is important [109]. Even with high-
quality genomes, using basic homology-based searches for gene identification sometimes
causes misinterpretations, as seen with the H. exemplaris genome [73,171–176].

To stimulate the production of new genomic datasets to enable high taxonomic cov-
erage, the development of novel methods, alongside the existing technologies, will be
required. A method enabling genome sequencing from a single individual has contributed
to the removal of non-tardigrade contamination and should allow draft genomes for
many tardigrade species to be obtained [110,173,177]. However, genome assemblies from
short-read data alone will be highly fragmented, somewhat limiting genome analysis (for
example, synteny analysis). Other methods that can be used are long-read sequencing and
Hi-C; recent applications have produced pseudo-chromosomal genome assemblies in both
chironomids (Pol. vanderplanki [162]) and tardigrades (H. exemplaris [178]). The applica-
tion of these methods will likely improve taxonomic coverage, enabling a more thorough
analysis of genomic evolution within Tardigrada.

5.2. Functional Analysis of Anhydrobiosis Genes In Vivo

As omics analyses yield new genes and proteins as candidates for roles in anhydro-
biosis, functional analysis of these candidates, which might include protective molecules,
maintenance pathways and regulatory pathways by loss- or gain-of-function experiments,
will become increasingly necessary. In gain-of-function experiments, several genes have
been expressed in desiccation-sensitive cells and species, such as human cells, yeast, plants
and mice, to test for improved tolerance [86,91,97,99,110]. The tissue-specific expression
of unique genes should be considered when the exogenous expression of gain-of-function
analysis is performed. On the other hand, for loss-of-function experiments, RNAi-mediated
gene knockdown has been established for H. exemplaris [179], and has demonstrated a
decrease in the survival of anhydrobiosis after the inhibition of CAHS protein genes and
antioxidant genes [97,106]. For Pol. vanderplanki, RNAi and CRISPR/Cas9 systems have
been established in the anhydrobiotic cell line Pv11 [22,66,180]. However, in genomes with
a significant expansion of key gene families, there is the problem of functional specifica-
tion/redundancy and off-target effects as a result of the sequence similarity between gene
copies, which might limit the efficacy of such approaches. Moreover, a problem unique to
knockdown during anhydrobiosis is the need to consider the time required for RNAi to
take effect; loss of water molecules during desiccation may affect transcription/translation
capacity and RNAi efficiency.
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5.3. Preconditioning Determines the Survival of Anhydrobiosis

Several tardigrade species, such as R. varieornatus and Mil. tardigradum, do not need
to be prepared for entry into anhydrobiosis and they can undergo anhydrobiosis at any
life stage, from embryos to adults [23,181]. On the other hand, other anhydrobiotic species,
i.e., nematodes, chironomids and other tardigrades, need incubation for at least one day
under high humidity conditions to sense impending desiccation and induce protection
machinery [16,18,21,24]. Therefore, preconditioning methods are important when assessing
anhydrobiotic ability, particularly when conducting functional assays of anhydrobiosis
genes. However, anhydrobiosis induction methods vary between species and research
groups (see Table 1). In H. exemplaris, all tardigrades incubated at 95% RH for four days
survived subsequent desiccation [24], while only 2% survived after 16 h of preconditioning
at 92% RH [25]. Similar differences in recovery from anhydrobiosis that depend on precon-
ditioning conditions have also been observed in Pol. vanderplanki [21,182]. Such marked
differences in survival rate emphasize the need for correct preconditioning treatments if
anhydrobiosis is to be successful. It remains unknown whether “optimal” preconditioning
can achieve near-zero cellular damage or whether such damage is unavoidable. Thus,
there is a possibility that specimens that experience insufficient preconditioning, even with
a 100% survival rate, may harbor cellular damage due to the “incomplete” assembly of
anhydrobiosis machinery. To validate this, how different preconditioning treatments affect
the expression of anhydrobiosis genes and the extent to which cellular damage occurs
under these conditions should be correlated, while simultaneously taking into considera-
tion the stages of anhydrobiosis (i.e., active, entry, anhydrobiosis, recovery, late recovery)
and the difference in preconditioning requirements of each species (e.g., R. varieornatus,
H. exemplaris). Such data would reveal whether repair systems are induced during rehy-
dration from “successful” anhydrobiosis. Additionally, it should be noted that long-term
preconditioning treatments may starve specimens, possibly inducing unexpected, poten-
tially undesirable pathways as a consequence. These problems imply that the use of
samples with inadequate preconditioning can lead to the misinterpretation of omics and
biochemical studies. Although details of the mechanisms of anhydrobiosis are currently
incomplete and seemingly complex, more extensive analysis may carve out a more simple
model that defines the “essential core” of anhydrobiosis machinery.

5.4. Desiccation-Induced Quiescence and Cryptobiotic Anhydrobiosis

Anhydrobiosis is the ametabolic state induced by desiccation, while quiescence, a state
which may seem similar, only reduces metabolic activity. The main difference is in the extent
of metabolic activity; the desiccation-induced quiescent state shows signs of retaining some
metabolic activity, which is absent in anhydrobiotic specimens. These two states have been
mistaken in studies of anhydrobiosis. One study on S. cerevisiae reported the degradation of
trehalose during long-term storage in a desiccation chamber [14]. However, this implies the
yeast specimens were not in the anhydrobiotic state, because metabolism would not occur
in cells with almost complete water loss. Another study reported that the daf-2 mutant of
C. elegans can survive exposure to 98% RH and 23% RH, but the survival rate at 0% RH
decreased to 10%, even after pre-incubation at 98% RH for four days [17]. As anhydrobiotic
specimens can survive at 0% RH for prolonged periods, these specimens may have been in a
quiescent, rather than an anhydrobiotic, state. Unfortunately, there are no data to determine
at what residual water content biological processes, such as metabolism, transcription and
translation, halt as organisms or cells enter anhydrobiosis. Further studies that compare
these two states, i.e., quiescence and anhydrobiosis, are required.

5.5. The Conundrum of Latent Life—Comparison of Distinct Anhydrobiotic Mechanisms
across Phyla

Understanding the “true anhydrobiosis” [17] mechanism requires integrating evidence
from anhydrobiotic species of different taxonomic groups, and this is what provoked
our comparison of the accumulated knowledge on Pol. vanderplanki and tardigrades.
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In summary, we have listed the properties of anhydrobiosis in Pol. vanderplanki and three
eutardigrade species (Table 2). The data from these taxa alone emphasize the complexity
of anhydrobiosis, showing that tardigrades from the same class use markedly different
machinery. Since anhydrobiosis occurs widely within phylum Tardigrada, it is anticipated
that the overall picture of anhydrobiosis mechanisms in tardigrades will only become more
complicated in the future.

As discussed above, anhydrobiosis raises intriguing issues in genomic evolution and
biochemistry. Why do anhydrobiotic species appear sporadically in the animal kingdom?
What advantage does a small genome size and the transition between the constitutive and
de novo expression of anhydrobiotic genes have? Is trehalose essential for anhydrobiosis
or can it be substituted? Why do several species enter anhydrobiosis only at a specific
life stage, while others have this ability throughout their whole life cycle? Despite these
important outstanding questions, we remain confident that the conundrum of latent life
in true anhydrobiotic samples will be solved by the collection and analysis of more data,
particularly given the advent of exciting new experimental approaches.
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