Skip to main content

Multi-Level Gene Expression in Response to Environmental Stress in Aquatic Invertebrate Chironomids: Potential Applications in Water Quality Monitoring

  • Chapter
  • First Online:
Reviews of Environmental Contamination and Toxicology Volume 259

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 259))

Abstract

In freshwater ecosystems, aquatic invertebrates are influenced continuously by both physical stress and xenobiotics. Chironomids (Diptera; Chironomidae), or non-biting midges, are the most diverse and abundant invertebrates in freshwater habitats. They are a fundamental link in food chains of aquatic ecosystems. Chironomid larvae tolerate stress factors in their environments via various physiological processes. At the molecular level, environmental pollutants induce multi-level gene responses in Chironomus that regulate cellular protection through the activation of defense processes. This paper reviews literature on the transcriptional responses of biomarker genes to environmental stress in chironomids at the molecular level, in studies conducted from 1991 to 2020 (120 selected literatures of 374 results with the keywords “Chironomus and gene expression” by PubMed search tool). According to these studies, transcriptional responses in chironomids vary depending on the type of stress factor and defensive responses associated with antioxidant activity, the endocrine system, detoxification, homeostasis and stress response, energy metabolism, ribosomal machinery, apoptosis, DNA repair, and epigenetics. These data could provide a comprehensive overview of how Chironomus species respond to pollutants in aquatic environments. Furthermore, the transcriptomic data could facilitate the development of genetic tools for water quality and environmental monitoring based on resident chironomid species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali A (1995) Nuisance, economic impact and possibilities for control. In: Armitage PD, Cranston PS, Pinder LVC (eds) The chironomidae: biology and ecology of non-biting midges. Chapman & Hall, London, pp 339–364

    Chapter  Google Scholar 

  • Allgeier S, Kästel A, Brühl CA (2019) Adverse effects of mosquito control using Bacillus Thuringiensis Var. Israelensis: reduced chironomid abundances in mesocosm, semi-field and field studies. Ecotoxicol Environ Saf 169:786–796

    Article  CAS  Google Scholar 

  • Anderson TD, Jin-Clark Y, Begum K, Starkey SR, Zhu KY (2008) Gene expression profiling reveals decreased expression of two hemoglobin genes associated with increased consumption of oxygen in Chironomus tentans exposed to atrazine: a possible mechanism for adapting to oxygen deficiency. Aquat Toxicol 86:148–156

    Google Scholar 

  • Aquilino M, Sánchez-Argüello P, Martínez-Guitarte JL (2016) Vinclozolin alters the expression of hormonal and stress genes in the midge Chironomus riparius. Aquat Toxicol 174:179–187

    Article  CAS  Google Scholar 

  • Aquilino M, Sánchez-Argüello P, Martínez-Guitarte JL (2018) Genotoxic effects of vinclozolin on the aquatic insect Chironomus riparius (Diptera, Chironomidae). Environ Pollut 232:563–570

    Article  CAS  Google Scholar 

  • Arambourou H, Planelló R, Llorente L, Fuertes I, Barata C, Delorme N, Noury P, Herrero Ó, Villeneuve A, Bonnineau C (2019) Chironomus riparius exposure to field-collected contaminated sediments: from subcellular effect to whole-organism response. Sci Total Environ 671:874–882

    Article  CAS  Google Scholar 

  • Arambourou H, Llorente L, Moreno-Ocio I, Herrero Ó, Barata C, Fuertes I, Delorme N, Méndez-Fernández L, Planelló R (2020) Exposure to heavy metal-contaminated sediments disrupts gene expression, lipid profile, and life history traits in the midge Chironomus riparius. Water Res 168:115165

    Article  CAS  Google Scholar 

  • Arimoro FO, Auta YI, Odume ON, Keke UN, Mohammed AZ (2018) Mouthpart deformities in Chironomidae (Diptera) as bioindicators of heavy metals pollution in Shiroro Lake, Niger State, Nigeria. Ecotoxicol Environ Saf 149:96–100

    Article  CAS  Google Scholar 

  • Armitage P, Cranston PS, Pinder LCV (1995) The chironomidae: the biology and ecology of non-biting midges. Chapman and Hall, London

    Book  Google Scholar 

  • Aziz JB, Akrawi NM, Nassori GA (1991) The effect of chronic toxicity of copper on the activity of Balbiani rings and nucleolar organizing region in the salivary gland chromosomes of Chironomus ninevah larvae. Environ Pollut 69:125–130

    Article  CAS  Google Scholar 

  • Bernabò P, Rebecchi L, Jousson O, Martínez-Guitarte JL, Lencioni V (2011) Thermotolerance and hsp70 heat shock response in the cold-stenothermal chironomid Pseudodiamesa branickii (NE Italy). Cell Stress Chaperones 16:403–410

    Google Scholar 

  • Bernabò P, Gaglio M, Bellamoli F, Viero G, Lencioni V (2017) DNA damage and translational response during detoxification from copper exposure in a wild population of Chironomus riparius. Chemosphere 173:235–244

    Google Scholar 

  • Cao C, Wang Z, Niu C, Desneux N, Gao X (2013) Transcriptome profiling of Chironomus kiinensis under phenol stress using Solexa sequencing technology. PLoS One 8:e58914

    Article  CAS  Google Scholar 

  • Cao CW, Sun LL, Niu F, Liu P, Chu D, Wang ZY (2016) Effects of phenol on metabolic activities and transcription profiles of cytochrome P450 enzymes in Chironomus kiinensis larvae. Bull Entomol Res 106:73–80

    Google Scholar 

  • Chen X, Li H, Zhang J, Ding Y, You J (2016) Does cadmium affect the toxicokinetics of permethrin in Chironomus dilutus at sublethal level? Evidence of enzymatic activity and gene expression. Environ Pollut 218:1005–1013

    Article  CAS  Google Scholar 

  • Clements WH (2000) Integrating effects of contaminants across levels of biological organization: an overview. J Aquat Ecosyst Stress Recover 7:113–116

    Article  Google Scholar 

  • Cornette R, Kanamori Y, Watanabe M, Nakahara Y, Gusev O, Mitsumasu K, Kadono-Okuda K, Shimomura M, Mita K, Kikawada T, Okuda T (2010) Identification of anhydrobiosis-related genes from an expressed sequence tag database in the cryptobiotic midge Polypedilum vanderplanki (Diptera; Chironomidae). J Biol Chem 285:35889–35899

    Article  CAS  Google Scholar 

  • Datkhile KD, Mukhopadhyaya R, Dongre TK, Nath BB (2011) Hsp70 expression in Chironomus ramosus exposed to gamma radiation. Int J Radiat Biol 87:213–221

    Google Scholar 

  • Epler JH (2001) Identification manual for the larval Chironomidae (Diptera) of North and South Carolina. A guide to the taxonomy of the midges of the southeastern United States, including Florida. North Carolina Department of Environment and Natural Resources, Palatka, 526 pp

    Google Scholar 

  • Everatt MJ, Convey P, Bale JS, Worland MR, Hayward SAL (2015) Responses of invertebrates to temperature and water stress: a polar perspective. J Therm Biol 54:118–132

    Article  Google Scholar 

  • Failla AJ, Vasquez AA, Fujimoto M, Ram JL (2015) The ecological, economic and public health impacts of nuisance chironomids and their potential as aquatic invaders. Aquat Invasions 10:1–15

    Article  Google Scholar 

  • Fedorenkova A, Arie Vonk J, Rob Lenders HJ, Joop Ouborg N, Breure MA, Jan Hendriks A (2010) Ecotoxicogenomics: bridging the gap between genes and populations. Environ Sci Technol 44:9239–9240

    Article  CAS  Google Scholar 

  • Govinda S, Kutlow T, Bentivegna CS (2000) Identification of a putative ribosomal protein mRNA in Chironomus riparius and its response to cadmium, heat shock, and actinomycin D. J Biochem Mol Toxicol 14:195–203

    Article  CAS  Google Scholar 

  • Ha MH, Choi J (2008) Effects of environmental contaminants on hemoglobin of larvae of aquatic midge, Chironomus riparius (Diptera: Chironomidae): a potential biomarker for ecotoxicity monitoring. Chemosphere 71:1928–1936

    Article  CAS  Google Scholar 

  • Halpern M, Senderovich Y (2015) Chironomid microbiome. Microb Ecol 70:1–8

    Article  Google Scholar 

  • Herrero Ó, Planelló R, Morcillo G (2015) The plasticizer benzyl butyl phthalate (BBP) alters the ecdysone hormone pathway, the cellular response to stress, the energy metabolism, and several detoxication mechanisms in Chironomus riparius larvae. Chemosphere 128:266–277

    Article  CAS  Google Scholar 

  • Herrero Ó, Planelló R, Morcillo G (2016) The ribosome biogenesis pathway as an early target of benzyl butyl phthalate (BBP) toxicity in Chironomus riparius larvae. Chemosphere 144:1874–1884

    Article  CAS  Google Scholar 

  • Herrero Ó, Morcillo G, Planelló R (2017) Transcriptional deregulation of genetic biomarkers in Chironomus riparius larvae exposed to ecologically relevant concentrations of di(2-ethylhexyl) phthalate (DEHP). PLoS One 12:e0171719

    Article  CAS  Google Scholar 

  • Herrero Ó, Aquilino M, Sánchez-Argüello P, Planelló R (2018) The BPA-substitute bisphenol S alters the transcription of genes related to endocrine, stress response and biotransformation pathways in the aquatic midge Chironomus riparius (Diptera, Chironomidae). PLoS One 13:e0193387

    Article  CAS  Google Scholar 

  • Im J, Chatterjee N, Choi J (2019) Genetic, epigenetic, and developmental toxicity of Chironomus riparius raised in metal-contaminated field sediments: a multi-generational study with arsenic as a second challenge. Sci Total Environ 672:789–797

    Article  CAS  Google Scholar 

  • Jeppe KJ, Carew ME, Long SM, Lee SF, Pettigrove V, Hoffmann AA (2014) Genes involved in cysteine metabolism of Chironomus tepperi are regulated differently by copper and by cadmium. Comp Biochem Physiol C Toxicol Pharmacol 162:1–6

    Article  CAS  Google Scholar 

  • Jeppe KJ, Carew ME, Pettigrove V, Hoffmann AA (2017) Toxicant mixtures in sediment alter gene expression in the cysteine metabolism of Chironomus tepperi. Environ Toxicol Chem 36:691–698

    Article  CAS  Google Scholar 

  • Karouna-Renier NK, Zehr JP (2003) Short-term exposures to chronically toxic copper concentrations induce HSP70 proteins in midge larvae (Chironomus tentans). Sci Total Environ 312:267–272

    Article  CAS  Google Scholar 

  • Karouna-Renier NK, Yang WJ, Ranga Rao K (2003) Cloning and characterization of a 70 kDa heat shock cognate gene (HSC70) from two species of chironomus. Insect Mol Biol 12:19–26

    Article  CAS  Google Scholar 

  • Karouna-Renier NK, Rao KR (2009) An inducible HSP70 gene from the midge Chironomus dilutus: characterization and transcription profile under environmental stress. Insect Mol Biol 18:87–96

    Google Scholar 

  • Khosrovyan A, Kahru A (2020) Evaluation of the hazard of irregularly-shaped co-polyamide microplastics on the freshwater non-biting midge Chironomus riparius through its life cycle. Chemosphere 244:125487

    Article  CAS  Google Scholar 

  • Lauritano C, Procaccini G, Ianora A (2012) Gene expression patterns and stress response in marine copepods. Mar Environ Res 76:22–31

    Article  CAS  Google Scholar 

  • Laviad S, Halpern M (2016) Chironomids’ relationship with Aeromonas species. Front Microbiol 7:736

    Article  Google Scholar 

  • Lee SW, Choi J (2009) Multi-level ecotoxicity assay on the aquatic midge, Chironomus tentans (Diptera, Chironomidae) exposed to octachlorostyrene. Environ Toxicol Pharmacol 28:269–274

    Article  CAS  Google Scholar 

  • Lee SM, Lee SB, Park CH, Choi J (2006) Expression of heat shock protein and hemoglobin genes in Chironomus tentans (Diptera, chironomidae) larvae exposed to various environmental pollutants: a potential biomarker of freshwater monitoring. Chemosphere 65:1074–1081

    Article  CAS  Google Scholar 

  • Lencioni V, Grazioli V, Rossaro B, Bernabò P (2016) Transcriptional profiling induced by pesticides employed in organic agriculture in a wild population of Chironomus riparius under laboratory conditions. Sci Total Environ 557–558:183–191

    Article  CAS  Google Scholar 

  • Li X, Zhang X, Zhang J, Zhang X, Starkey SR, Zhu KY (2009) Identification and characterization of eleven glutathione S-transferase genes from the aquatic midge Chironomus tentans (Diptera: Chironomidae). Insect Biochem Mol Biol 39:745–754

    Article  CAS  Google Scholar 

  • Londoño DK, Siegfried BD, Lydy MJ (2004) Atrazine induction of a family 4 cytochrome P450 gene in Chironomus tentans (Diptera: Chironomidae). Chemosphere 56:701–706

    Google Scholar 

  • Long SM, Tull DL, Jeppe KJ, De Souza DP, Dayalan S, Pettigrove VJ, McConville MJ, Hoffmann AA (2015) A multi-platform metabolomics approach demonstrates changes in energy metabolism and the transsulfuration pathway in Chironomus tepperi following exposure to zinc. Aquat Toxicol 162:54–65

    Google Scholar 

  • Mantilla JG, Gomes L, Cristancho MA (2018) The differential expression of Chironomus spp genes as useful tools in the search for pollution biomarkers in freshwater ecosystems. Brief Funct Genomics 17:151–156

    Article  CAS  Google Scholar 

  • Marinkovic M, de Leeuw WC, Ensink WA, de Jong M, Breit TM, Admiraal W, Kraak MHS, Jonker MJ (2012) Gene expression patterns and life cycle responses of toxicant-exposed chironomids. Environ Sci Technol 46:12679–12689

    Article  CAS  Google Scholar 

  • Martínez-Guitarte JL (2018) Transcriptional activity of detoxification genes is altered by ultraviolet filter in Chironomus riparius. Ecotoxicol Environ Saf 149:64–71

    Article  CAS  Google Scholar 

  • Martínez-Guitarte JL, Planelló R, Morcillo G (2007) Characterization and expression during development and under environmental stress of the genes encoding ribosomal proteins L11 and L13 in Chironomus riparius. Comp Biochem Physiol B Biochem Mol Biol 147:590–596

    Article  CAS  Google Scholar 

  • Martínez-Paz P, Morales M, Martínez-Guitarte JL, Morcillo G (2012) Characterization of a cytochrome P450 gene (CYP4G) and modulation under different exposures to xenobiotics (tributyltin, nonylphenol, bisphenol A) in Chironomus riparius aquatic larvae. Comp Biochem Physiol C Toxicol Pharmacol 155:333–343

    Google Scholar 

  • Martínez-Paz P, Morales M, Urien J, Morcillo G, Martínez-Guitarte JL (2017) Endocrine-related genes are altered by antibacterial agent triclosan in Chironomus riparius aquatic larvae. Ecotoxicol Environ Saf 140:185–190

    Google Scholar 

  • Martínez-Paz P (2018) Response of detoxification system genes on Chironomus riparius aquatic larvae after antibacterial agent triclosan exposures. Sci Total Environ 624:1–8

    Article  CAS  Google Scholar 

  • Martínez-Paz P, Morales M, Martín R, Martínez-Guitarte JL, Morcillo G (2014) Characterization of the small heat shock protein Hsp27 gene in Chironomus riparius (Diptera) and its expression profile in response to temperature changes and xenobiotic exposures. Cell Stress Chaperones 19:529–540

    Article  CAS  Google Scholar 

  • Martínez-Paz P, Negri V, Esteban-Arranz A, Martínez-Guitarte JL, Ballesteros P, Morales M (2019) Effects at molecular level of multi-walled carbon nanotubes (MWCNT) in Chironomus riparius (DIPTERA) aquatic larvae. Aquat Toxicol 209:42–48

    Article  CAS  Google Scholar 

  • Martín-Folgar R, Martínez-Guitarte JL (2017) Cadmium alters the expression of small heat shock protein genes in the aquatic midge Chironomus riparius. Chemosphere 169:485–492

    Article  CAS  Google Scholar 

  • Martín-Folgar R, Martínez-Guitarte JL (2019) Effects of single and mixture exposure of cadmium and copper in apoptosis and immune related genes at transcriptional level on the midge Chironomus riparius Meigen (Diptera, Chironomidae). Sci Total Environ 677:590–598

    Article  CAS  Google Scholar 

  • Martín-Folgar R, de la Fuente M, Morcillo G, Martínez-Guitarte JL, Martín-Folgar R (2015) Characterization of six small HSP genes from Chironomus riparius (Diptera, Chironomidae): differential expression under conditions of normal growth and heat-induced stress. Comp Biochem Physiol A Mol Integr Physiol 188:76–86

    Article  CAS  Google Scholar 

  • Mattingly KS, Beaty BJ, Mackie RS, McGaw M, Carlson JO, Rayms-Keller A (2001) Molecular cloning and characterization of a metal responsive Chironomus tentans alpha-tubulin cDNA. Aquat Toxicol 54:249–260

    Google Scholar 

  • Michailova P, Ilkova J, White KN (2003) Functional and structural rearrangements of salivary polytene chromosomes of Chironomus riparius mg. (Diptera, Chironomidae) in response to freshly neutralized aluminium. Environ Pollut 123:193–207

    Article  CAS  Google Scholar 

  • Michailova P, Petrova N, Ilkova J, Bovero S, Brunetti S, White K, Sella G (2006) Genotoxic effect of copper on salivary gland polytene chromosomes of Chironomus riparius Meigen (Diptera, Chironomidae). Environ Pollut 144:647–654

    Article  CAS  Google Scholar 

  • Morales M, Planelló R, Martínez-Paz P, Herrero O, Cortés E, Martínez-Guitarte JL, Morcillo G (2011) Characterization of Hsp70 gene in Chironomus riparius: expression in response to endocrine disrupting pollutants as a marker of ecotoxicological stress. Comp Biochem Physiol C Toxicol Pharmacol 153:150–158

    Article  CAS  Google Scholar 

  • Morales M, Martínez-Paz P, Ozáez I, Martínez-Guitarte JL, Morcillo G (2013) DNA damage and transcriptional changes induced by tributyltin (TBT) after short in vivo exposures of Chironomus riparius (Diptera) larvae. Comp Biochem Physiol C Toxicol Pharmacol 158:57–63

    Article  CAS  Google Scholar 

  • Morales M, Martínez-Paz P, Martín R, Planelló R, Urien J, Martínez-Guitarte JL, Morcillo G (2014) Transcriptional changes induced by in vivo exposure to pentachlorophenol (PCP) in Chironomus riparius (Diptera) aquatic larvae. Aquat Toxicol 157:1–9

    Article  CAS  Google Scholar 

  • Morales M, de la Fuente M, Martín-Folgar R (2020) BPA and its analogues (BPS and BPF) modify the expression of genes involved in the endocrine pathway and apoptosis and a multi drug resistance gene of the aquatic midge Chironomus riparius (Diptera). Environ Pollut 265:114806

    Article  CAS  Google Scholar 

  • Muñiz-González AB, Martínez-Guitarte JL (2018) Effects of single exposure and binary mixtures of ultraviolet filters octocrylene and 2-ethylhexyl 4-(dimethylamino) benzoate on gene expression in the freshwater insect Chironomus riparius. Environ Sci Pollut Res Int 25:35501–35514

    Article  CAS  Google Scholar 

  • Muñiz-González AB, Martínez-Guitarte JL (2020a) Combined effects of benzophenone-3 and temperature on gene expression and enzymatic activity in the aquatic larvae Chironomus riparius. Sci Total Environ 698:134292

    Article  CAS  Google Scholar 

  • Muñiz-González AB, Martínez-Guitarte JL (2020b) Unveiling complex responses at the molecular level: transcriptional alterations by mixtures of bisphenol a, octocrylene, and 2′-ethylhexyl 4-(dimethylamino)benzoate on Chironomus riparius. Ecotoxicol Environ Saf 206:111199

    Article  CAS  Google Scholar 

  • Nair PM, Choi J (2011) Identification, characterization and expression profiles of Chironomus riparius glutathione S-transferase (GST) genes in response to cadmium and silver nanoparticles exposure. Aquat Toxicol 101:550–560

    Article  CAS  Google Scholar 

  • Nair PM, Choi J (2012) Characterization and transcriptional regulation of thioredoxin reductase 1 on exposure to oxidative stress inducing environmental pollutants in Chironomus riparius. Comp Biochem Physiol B Biochem Mol Biol 161:134–139

    Article  CAS  Google Scholar 

  • Nair PM, Chung IM (2015) Alteration in the expression of antioxidant and detoxification genes in Chironomus riparius exposed to zinc oxide nanoparticles. Comp Biochem Physiol B Biochem Mol Biol 190:1–7

    Article  CAS  Google Scholar 

  • Nair PM, Park SY, Choi J (2011) Expression of catalase and glutathione S-transferase genes in Chironomus riparius on exposure to cadmium and nonylphenol. Comp Biochem Physiol C Toxicol Pharmacol 154:399–408

    Article  CAS  Google Scholar 

  • Nair PM, Park SY, Choi J (2012) Characterization and expression analysis of phospholipid hydroperoxide glutathione peroxidase cDNA from Chironomus riparius on exposure to cadmium. Comp Biochem Physiol B Biochem Mol Biol 163:37–42

    Google Scholar 

  • Nair PM, Park SY, Choi J (2013) Characterization and expression of cytochrome p450 cDNA (CYP9AT2) in Chironomus riparius fourth instar larvae exposed to multiple xenobiotics. Environ Toxicol Pharmacol 36:1133–1140

    Article  CAS  Google Scholar 

  • Neumann NF, Galvez F (2002) DNA microarrays and toxicogenomics: applications for ecotoxicology. Biotechnol Adv 20:391–419

    Article  CAS  Google Scholar 

  • Nieto E, Corada-Fernández C, Hampel M, Lara-Martín PA, Sánchez-Argüello P, Blasco J (2017) Effects of exposure to pharmaceuticals (diclofenac and carbamazepine) spiked sediments in the midge, Chironomus riparius (Diptera, Chironomidae). Sci Total Environ 609:715–723

    Article  CAS  Google Scholar 

  • OECD (2004a) Test no. 218: sediment-water chironomid toxicity test using spiked sediment. Guidelines for testing of chemicals. Organization for Economic Cooperation and Development, Paris, France

    Google Scholar 

  • OECD (2004b) Test no. 219: sediment–water chironomid toxicity using spiked water. Guidelines for testing of chemicals. Organization for Economic Cooperation and Development, Paris, France

    Google Scholar 

  • OECD (2010) Test no. 233: sediment-water chironomid life-cycle toxicity test using spiked water or spiked sediment. Guidelines for testing of chemicals. Organization for Economic Cooperation and Development, Paris, France

    Google Scholar 

  • OECD (2011) Test no. 235: Chironomus sp., acute immobilisation test. Organization for Economic Cooperation and Development, Paris, France

    Google Scholar 

  • Ozáez I, Martínez-Guitarte JL, Morcillo G (2013) Effects of in vivo exposure to UV filters (4-MBC, OMC, BP-3, 4-HB, OC, OD-PABA) on endocrine signaling genes in the insect Chironomus riparius. Sci Total Environ 456–457:120–126

    Google Scholar 

  • Ozáez I, Morcillo G, Martínez-Guitarte JL (2016a) Ultraviolet filters differentially impact the expression of key endocrine and stress genes in embryos and larvae of Chironomus riparius. Sci Total Environ 557–558:240–247

    Article  CAS  Google Scholar 

  • Ozáez I, Morcillo G, Martínez-Guitarte JL (2016b) The effects of binary UV filter mixtures on the midge Chironomus riparius. Sci Total Environ 556:154–162

    Article  CAS  Google Scholar 

  • Park SY, Choi J (2017) Molecular characterization and expression analysis of p38 MAPK gene and protein in aquatic midge, Chironomus riparius (Diptera: Chironomidae), exposed to environmental contaminants. Arch Environ Contam Toxicol 72:428–438

    Article  CAS  Google Scholar 

  • Park K, Kwak IS (2008a) Characterization of heat shock protein 40 and 90 in Chironomus Riparius larvae: effects of di(2-ethylhexyl) phthalate exposure on gene expressions and mouthpart deformities. Chemosphere 74:89–95

    Article  CAS  Google Scholar 

  • Park K, Kwak IS (2008b) Expression of Chironomus riparius serine-type endopeptidase gene under di-(2-ethylhexyl)-phthalate (DEHP) exposure. Comp Biochem Physiol B Biochem Mol Biol 151:349–354

    Article  CAS  Google Scholar 

  • Park K, Kwak IS (2009a) Alcohol dehydrogenase gene expression in Chironomus riparius exposed to di(2-ethylhexyl) phthalate. Comp Biochem Physiol C Toxicol Pharmacol 150:361–367

    Article  CAS  Google Scholar 

  • Park K, Kwak IS (2009b) Calponin gene expression in Chironomus riparius exposed to di(2-ethylhexyl) phthalate. Environ Toxicol 24:555–562

    Article  CAS  Google Scholar 

  • Park K, Kwak IS (2010) Molecular effects of endocrine-disrupting chemicals on the Chironomus riparius estrogen-related receptor gene. Chemosphere 79:934–941

    Article  CAS  Google Scholar 

  • Park K, Kwak IS (2012) Gene expression of ribosomal protein mRNA in Chironomus riparius: effects of endocrine disruptor chemicals and antibiotics. Comp Biochem Physiol C Toxicol Pharmacol 156:113–120

    Article  CAS  Google Scholar 

  • Park K, Kwak IS (2014) The effect of temperature gradients on endocrine signaling and antioxidant gene expression during Chironomus riparius development. Sci Total Environ 470–471:1003–1011

    Article  CAS  Google Scholar 

  • Park K, Kwak IS (2018) Disrupting effects of antibiotic sulfathiazole on developmental process during sensitive lifecycle stage of Chironomus riparius. Chemosphere 190:25–34

    Article  CAS  Google Scholar 

  • Park K, Kwak IS (2020) Cadmium-induced developmental alteration and upregulation of serine-type endopeptidase transcripts in wild freshwater populations of Chironomus plumosus. Ecotoxicol Environ Saf 192:110240

    Article  CAS  Google Scholar 

  • Park K, Bang HW, Park J, Kwak IS (2009) Ecotoxicological multilevel-evaluation of the effects of fenbendazole exposure to Chironomus Riparius larvae. Chemosphere 77:359–367

    Article  CAS  Google Scholar 

  • Park K, Park J, Kim J, Kwak IS (2010) Biological and molecular responses of Chironomus riparius (Diptera, Chironomidae) to herbicide 2,4-D (2,4-dichlorophenoxyacetic acid). Comp Biochem Physiol C Toxicol Pharmacol 151:439–446

    Article  CAS  Google Scholar 

  • Park SY, Chung J, Colman BP, Matson CW, Kim Y, Lee BC, Kim PJ, Choi K, Choi J (2015) Ecotoxicity of bare and coated silver nanoparticles in the aquatic midge, Chironomus riparius. Environ Toxicol Chem 34:2023–2032

    Google Scholar 

  • Pedrosa J, Gravato C, Campos D, Cardoso P, Figueira E, Nowak C, Soares AMVM, Barata C, Pestana JLT (2017) Investigating heritability of cadmium tolerance in Chironomus riparius natural populations: A physiological approach. Chemosphere 170:83–94

    Google Scholar 

  • Pfenninger M, Foucault Q (2020) Genomic processes underlying rapid adaptation of a natural Chironomus riparius population to unintendedly applied experimental selection pressures. Mol Ecol 29:536–548

    Article  CAS  Google Scholar 

  • Pinder LCV (1986) Biology of freshwater chironomidae. Annu Rev Entomol 31:1–23

    Article  Google Scholar 

  • Planelló R, Martínez-Guitarte JL, Morcillo G (2007) Ribosomal genes as early targets of cadmium-induced toxicity in Chironomus riparius larvae. Sci Total Environ 373:113–121

    Article  CAS  Google Scholar 

  • Planelló R, Martínez-Guitarte JL, Morcillo G (2008) The endocrine disruptor bisphenol a increases the expression of HSP70 and ecdysone receptor genes in the aquatic larvae of Chironomus riparius. Chemosphere 71:1870–1876

    Article  CAS  Google Scholar 

  • Planelló R, MartÚnez-Guitarte JL, Morcillo G (2010) Effect of acute exposure to cadmium on the expression of heat-shock and hormone-nuclear receptor genes in the aquatic midge Chironomus riparius. Sci Total Environ 408:1598–1603

    Google Scholar 

  • Planelló R, Herrero O, MartÚnez-Guitarte JL, Morcillo G (2011) Comparative effects of butyl benzyl phthalate (BBP) and di(2-ethylhexyl) phthalate (DEHP) on the aquatic larvae of Chironomus riparius based on gene expression assays related to the endocrine system, the stress response and ribosomes. Aquat Toxicol 105:62–70

    Google Scholar 

  • Planelló R, Servia MJ, Gómez-Sande P, Herrero Ó, Cobo F, Morcillo G (2015) Transcriptional responses, metabolic activity and mouthpart deformities in natural populations of Chironomus riparius larvae exposed to environmental pollutants. Environ Toxicol 30:383–395

    Article  CAS  Google Scholar 

  • Planelló R, Herrero O, García P, Beltrán EM, Llorente L, Sánchez-Argüello P (2020) Developmental/reproductive effects and gene expression variations in Chironomus riparius after exposure to reclaimed water and its fortification with carbamazepine and triclosan. Water Res 178:115790

    Article  CAS  Google Scholar 

  • Read DE, Gorman AM (2009) Heat shock protein 27 in neuronal survival and neurite outgrowth. Biochem Biophys Res Commun 382:6–8

    Article  CAS  Google Scholar 

  • Richardson JS, Kiffney PM (2000) Responses of a macroinvertebrate community from a pristine, southern British Columbia, Canada, stream to metals in experimental mesocosms. Environ Toxicol Chem 19:736–743

    Article  CAS  Google Scholar 

  • Rinehart JP, Hayward SA, Elnitsky MA, Sandro LH, Lee RE Jr, Denlinger DL (2006) Continuous up-regulation of heat shock proteins in larvae, but not adults, of a polar insect. Proc Natl Acad Sci U S A 103:14223–14227

    Google Scholar 

  • Roberts RJ, Agius C, Saliba C, Bossier P, Sung YY (2010) Heat shock proteins (chaperones) in fish and shellfish and their potential role in relation to fish health: a review. J Fish Dis 33:789–801

    Article  CAS  Google Scholar 

  • Shaha CM, Pandit RS (2020) Biochemical and molecular changes mediated by plasticizer diethyl phthalate in Chironomus circumdatus (Bloodworms). Comp Biochem Physiol C Toxicol Pharmacol 228:108650

    Google Scholar 

  • Steinberg CEW, Stürzenbaum SR, Menzel R (2008) Genes and environment: striking the fine balance between sophisticated biomonitoring and true functional environmental genomics. Sci Total Environ 400:142–161

    Article  CAS  Google Scholar 

  • Tang G, Yao J, Zhang X, Lu N, Zhu KY (2018) Comparison of gene expression profiles in the aquatic midge (Chironomus tentans) larvae exposed to two major agricultural pesticides. Chemosphere 194:745–754

    Article  CAS  Google Scholar 

  • Tanguay RM, Vincent M (1981) Biosynthesis and characterization of heat shock proteins in Chironomus tentans salivary glands. Can J Biochem 59:67–73

    Article  CAS  Google Scholar 

  • Vincent M, Tanguay RM (1979) Heat-shock induced proteins present in the cell nucleus of Chironomus tentans salivary gland. Nature 281:501–503

    Article  CAS  Google Scholar 

  • Wang L, Zhou L, Fan D, Wang Z, Gu W, Shi L, Liu J, Yang J (2019) Bisphenol P activates hormonal genes and introduces developmental outcomes in Chironomus tentans. Ecotoxicol Environ Saf 174:675–682

    Article  CAS  Google Scholar 

  • Wei F, Wang D, Li H, Xia P, Ran Y, You J (2020) Toxicogenomics provides insights to toxicity pathways of neonicotinoids to aquatic insect, Chironomus dilutus. Environ Pollut 260:114011

    Article  CAS  Google Scholar 

  • Wiseman SB, Anderson JC, Liber K, Giesy JP (2013) Endocrine disruption and oxidative stress in larvae of Chironomus dilutus following short-term exposure to fresh or aged oil sands process-affected water. Aquat Toxicol 142–143:414–421

    Article  CAS  Google Scholar 

  • Wojda I (2017) Temperature stress and insect immunity. J Therm Biol 68:96–103

    Article  CAS  Google Scholar 

  • Xie Z, Tang J, Wu X, Fan S, Cheng H, Li X, Hua R (2019a) Bioconcentration and ecotoxicity of sulfadiazine in the aquatic midge Chironomus riparius. Environ Toxicol Pharmacol 66:69–74

    Article  CAS  Google Scholar 

  • Xie Z, Tang J, Wu X, Li X, Hua R (2019b) Bioconcentration, metabolism and the effects of tetracycline on multiple biomarkers in Chironomus riparius larvae. Sci Total Environ 649:1590–1598

    Article  CAS  Google Scholar 

  • Xie Z, Gan Y, Tang J, Fan S, Wu X, Li X, Cheng H, Tang J (2020) Combined effects of environmentally relevant concentrations of diclofenac and cadmium on Chironomus riparius larvae. Ecotoxicol Environ Saf 202:110906

    Article  CAS  Google Scholar 

  • Xiuwei L, Zhang X, Zhang J, Zhang X, Starkey SR, Zhu KY (2009) Identification and characterization of eleven glutathione S-transferase genes from the aquatic midge Chironomus tentans (Diptera: Chironomidae). Insect Biochem Mol Biol 39:745–754

    Article  CAS  Google Scholar 

  • Yoshimi T, Minowa K, Karouna-Renier NK, Watanabe C, Sugaya Y, Miura T (2002) Activation of a stress-induced gene by insecticides in the midge, Chironomus yoshimatsui. J Biochem Mol Toxicol 16:10–17

    Article  CAS  Google Scholar 

  • Yoshimi T, Odagiri K, Hiroshige Y, Yokobori S, Takahashi Y, Sugaya Y, Miura T (2009) Induction profile of HSP70-cognate genes by environmental pollutants in Chironomidae. Environ Toxicol Pharmacol 28:294–301

    Google Scholar 

  • Zhang Q, Chu D, Sun L, Cao C (2018) Cytochrome p450 CYP6EV11 in Chironomus kiiensis larvae involved in phenol stress. Int J Mol Sci 19:E1119

    Article  CAS  Google Scholar 

  • Zhang L, Yang J, Li H, You J, Chatterjee N, Zhang X (2020) Development of the transcriptome for a sediment ecotoxicological model species, Chironomus dilutus. Chemosphere 244:125541

    Article  CAS  Google Scholar 

  • Zhao L, Jones WA (2012) Expression of heat shock protein genes in insect stress responses. Invert Surviv J 9:93–101

    Google Scholar 

  • Zheng X, Xu Z, Qin G, Wu H, Wei H (2017) Cadmium exposure on tissue-specific cadmium accumulation and alteration of hemoglobin expression in the 4th-instar larvae of Propsilocerus akamusi (Tokunaga) under laboratory condition. Ecotoxicol Environ Saf 144:187–192

    Article  CAS  Google Scholar 

  • Zheng X, Gao Y, Li W, Wang S (2018) iTRAQ-based quantitative proteomic analysis identified Eno1 as a cadmium stress response gene in Propsilocerus akamusi (Tokunaga) hemolymph. Ecotoxicol Environ Saf 165:126–135

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Research Foundation of Korea, which is funded by the Korean Government [NRF-2018-R1A6A1A-03024314] and [NRF-2019-R1I1A1A-01056855].

Declaration of Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could appear to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ihn-Sil Kwak .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Supplementary Table 1

(DOCX 18 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Park, K., Kwak, IS. (2021). Multi-Level Gene Expression in Response to Environmental Stress in Aquatic Invertebrate Chironomids: Potential Applications in Water Quality Monitoring. In: de Voogt, P. (eds) Reviews of Environmental Contamination and Toxicology Volume 259. Reviews of Environmental Contamination and Toxicology, vol 259. Springer, Cham. https://doi.org/10.1007/398_2021_79

Download citation

Publish with us

Policies and ethics