Skip to main content
Log in

Passive Cavitation Enhancement Mapping via an Ultrasound Dual-Mode phased array to monitor blood-brain barrier opening

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Purpose

Focused ultrasound with the presence of microbubbles has been shown to temporarily open the blood-brain barrier (BBB), which offers the potential to improve central nervous system disease treatment. Since BBB opening also highly correlates with the microbubble-induced stable cavitation, in this study, we aim to realize and implement the construction of cavitation-related passive mapping under the structure of a dual-mode phased array structure for the guidance of the focused ultrasound BBB-opening treatment.

Methods

A sparse distributed (48 out of a total of 256) receiving configuration was implemented to be functioned as dual-mode transmitting and receiving in the structure. The centered transmission locates at 400 kHz, whereas its 0.5x subharmonics (200 kHz), fundamental (400 kHz), 1.5x ultraharmonic (600 kHz), and 2nd harmonics (800 kHz) have been received and characterized. We demonstrated the capability of correlating the signal intensity with a wide range of microbubble concentrations in the in-vitro setup. In in-vivo verifications, a total of 9 animal experiments have been conducted to implement the passive cavitation mapping to correlate the imaging intensity with the occurrence of the outcome to induce blood-brain barrier opening.

Results

Ultraharmonics provided superior sensitivity and detectability to microbubble-related cavitation activity than the other selected frequency band, suggesting the potential in predicting BBB opening outcomes based on the passive image.

Conclusion

Cavitation mapping implemented by dual-mode ultrasound phased array is feasible and can provide assure the treatment quality in opening the blood-brain barrier in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Daneman, R., & Prat, A. (2015). The blood-brain barrier. Cold Spring Harbor Perspectives In Biology, 7(1), a020412–a020412. https://doi.org/10.1101/cshperspect.a020412

    Article  Google Scholar 

  2. Chen, K. T., Wei, K. C., & Liu, H. L. (2019). Theranostic Strategy of Focused Ultrasound Induced Blood-Brain Barrier Opening for CNS Disease Treatment. Frontiers In Pharmacology, 10, 86. https://doi.org/10.3389/fphar.2019.00086

    Article  CAS  Google Scholar 

  3. Lin, C. Y., et al. (2015). Focused ultrasound-induced blood-brain barrier opening for non-viral, non-invasive, and targeted gene delivery. Journal Of Controlled Release : Official Journal Of The Controlled Release Society, 212, 1–9. https://doi.org/10.1016/j.jconrel.2015.06.010

    Article  CAS  Google Scholar 

  4. McDannold, N., Vykhodtseva, N., Raymond, S., Jolesz, F. A., & Hynynen, K. (2005). MRI-guided targeted blood-brain barrier disruption with focused ultrasound: histological findings in rabbits. Ultrasound In Medicine And Biology, 31(11), 1527–1537. https://doi.org/10.1016/j.ultrasmedbio.2005.07.010

    Article  Google Scholar 

  5. Hynynen, K., McDannold, N., Sheikov, N. A., Jolesz, F. A., & Vykhodtseva, N. (2005). Local and reversible blood-brain barrier disruption by noninvasive focused ultrasound at frequencies suitable for trans-skull sonications. Neuroimage, 24(1), 12–20. https://doi.org/10.1016/j.neuroimage.2004.06.046

    Article  Google Scholar 

  6. Treat, L. H., McDannold, N., Vykhodtseva, N., Zhang, Y., Tam, K., & Hynynen, K. (2007). Targeted delivery of doxorubicin to the rat brain at therapeutic levels using MRI-guided focused ultrasound. International journal of cancer, 121(4), 901–907. https://doi.org/10.1002/ijc.22732

    Article  CAS  Google Scholar 

  7. Wei, K. C., et al. (2013). Focused ultrasound-induced blood-brain barrier opening to enhance temozolomide delivery for glioblastoma treatment: a preclinical study. PLoS One, 8(3), e58995. https://doi.org/10.1371/journal.pone.0058995

    Article  CAS  Google Scholar 

  8. Liu, H. L., Huang, C. Y., Chen, J. Y., Wang, H. Y., Chen, P. Y., & Wei, K. C. (2014). Pharmacodynamic and therapeutic investigation of focused ultrasound-induced blood-brain barrier opening for enhanced temozolomide delivery in glioma treatment. PLoS One, 9(12), e114311. https://doi.org/10.1371/journal.pone.0114311

    Article  CAS  Google Scholar 

  9. Kinoshita, M., McDannold, N., Jolesz, F. A., & Hynynen, K. (2006). Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood-brain barrier disruption. Proc Natl Acad Sci U S A, 103(31), 11719–11723. https://doi.org/10.1073/pnas.0604318103

    Article  CAS  Google Scholar 

  10. Liu, H. L., et al. (2016). Focused Ultrasound Enhances Central Nervous System Delivery of Bevacizumab for Malignant Glioma Treatment. Radiology, 281(1), 99–108. https://doi.org/10.1148/radiol.2016152444

    Article  Google Scholar 

  11. Liu, H. L., et al. (2010). Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain. Proc Natl Acad Sci U S A, 107(34), 15205–15210. https://doi.org/10.1073/pnas.1003388107

    Article  Google Scholar 

  12. Fan, C. H., et al. (2013). SPIO-conjugated, doxorubicin-loaded microbubbles for concurrent MRI and focused-ultrasound enhanced brain-tumor drug delivery. Biomaterials, 34(14), 3706–3715. https://doi.org/10.1016/j.biomaterials.2013.01.099

    Article  CAS  Google Scholar 

  13. Hsu, P. H., et al. (2013). Noninvasive and targeted gene delivery into the brain using microbubble-facilitated focused ultrasound. PLoS One, 8(2), 76–82. https://doi.org/10.1371/journal.pone.0057682

    Article  CAS  Google Scholar 

  14. Lin, C. Y., et al. (2016). Non-invasive, neuron-specific gene therapy by focused ultrasound-induced blood-brain barrier opening in Parkinson’s disease mouse model. Journal Of Controlled Release : Official Journal Of The Controlled Release Society, 235, 72–81. https://doi.org/10.1016/j.jconrel.2016.05.052

    Article  CAS  Google Scholar 

  15. Pardridge, W. M. (2005). The blood-brain barrier and neurotherapeutics. NeuroRx: the journal of the American Society for Experimental NeuroTherapeutics, 2(1), 1–2. https://doi.org/10.1602/neurorx.2.1.1

    Article  Google Scholar 

  16. Sheikov, N., McDannold, N., Jolesz, F., Zhang, Y. Z., Tam, K., & Hynynen, K. (2006). Brain arterioles show more active vesicular transport of blood-borne tracer molecules than capillaries and venules after focused ultrasound-evoked opening of the blood-brain barrier. Ultrasound In Medicine And Biology, 32(9), 399–409. https://doi.org/10.1016/j.ultrasmedbio.2006.05.015

    Article  Google Scholar 

  17. Sheikov, N., McDannold, N., Vykhodtseva, N., Jolesz, F., & Hynynen, K. (2004). Cellular mechanisms of the blood-brain barrier opening induced by ultrasound in presence of microbubbles. Ultrasound In Medicine And Biology, 30(7), 79–89. https://doi.org/10.1016/j.ultrasmedbio.2004.04.010

    Article  Google Scholar 

  18. McDannold, N., Vykhodtseva, N., & Hynynen, K. (2006). Targeted disruption of the blood-brain barrier with focused ultrasound: association with cavitation activity. Physics In Medicine & Biology, 51(4), 793–807. https://doi.org/10.1088/0031-9155/51/4/003

    Article  CAS  Google Scholar 

  19. Tung, Y. S., Vlachos, F., Choi, J. J., Deffieux, T., Selert, K., & Konofagou, E. E. (2010). In vivo transcranial cavitation threshold detection during ultrasound-induced blood-brain barrier opening in mice. Physics In Medicine & Biology, 55(20), 6141–6155. https://doi.org/10.1088/0031-9155/55/20/007

    Article  Google Scholar 

  20. O’Reilly, M. A., & Hynynen, K. (2010). A PVDF receiver for ultrasound monitoring of transcranial focused ultrasound therapy. IEEE transactions on bio-medical engineering, 57(9), 2286–2294. https://doi.org/10.1109/TBME.2010.2050483

    Article  Google Scholar 

  21. O’Reilly, M. A., & Hynynen, K. (2012). Blood-brain barrier: real-time feedback-controlled focused ultrasound disruption by using an acoustic emissions-based controller. Radiology, 263(1), 96–106. https://doi.org/10.1148/radiol.11111417

    Article  Google Scholar 

  22. Arvanitis, C. D., Livingstone, M. S., Vykhodtseva, N., & McDannold, N. (2012). Controlled ultrasound-induced blood-brain barrier disruption using passive acoustic emissions monitoring. PLoS One, 7(9), 57–83. https://doi.org/10.1371/journal.pone.0045783

    Article  CAS  Google Scholar 

  23. Haworth, K. J., Bader, K. B., Rich, K. T., Holland, C. K., & Mast, T. D. (2017). Quantitative Frequency-Domain Passive Cavitation Imaging. Ieee Transactions On Ultrasonics, Ferroelectrics, And Frequency Control, 64(1), 177–191. https://doi.org/10.1109/tuffc.2016.2620492

    Article  Google Scholar 

  24. Haworth, K. J., et al. (2016). Trans-Stent B-Mode Ultrasound and Passive Cavitation Imaging. Ultrasound In Medicine And Biology, 42(2), 18–27. https://doi.org/10.1016/j.ultrasmedbio.2015.08.014

    Article  Google Scholar 

  25. Xia, J., Tsui, P. H., & Liu, H. L. (2016). Low-Pressure Burst-Mode Focused Ultrasound Wave Reconstruction and Mapping for Blood-Brain Barrier Opening: A Preclinical Examination. Scientific Reports, 6, 27939. https://doi.org/10.1038/srep27939

    Article  CAS  Google Scholar 

  26. Deng, L., O’Reilly, M. A., Jones, R. M., An, R., & Hynynen, K. (2016). A multi-frequency sparse hemispherical ultrasound phased array for microbubble-mediated transcranial therapy and simultaneous cavitation mapping. Physics In Medicine & Biology, 61(24), 8476–8501. https://doi.org/10.1088/0031-9155/61/24/8476

    Article  CAS  Google Scholar 

  27. Liu, H. L., et al. (2018). Design and Implementation of a Transmit/Receive Ultrasound Phased Array for Brain Applications. Ieee Transactions On Ultrasonics, Ferroelectrics, And Frequency Control, 65(10), 1756–1767. https://doi.org/10.1109/tuffc.2018.2855181

    Article  Google Scholar 

  28. Hynynen, K., & Jones, R. M. (2016). Image-guided ultrasound phased arrays are a disruptive technology for non-invasive therapy. Physics In Medicine & Biology, 61(17), R206–R248. https://doi.org/10.1088/0031-9155/61/17/r206

    Article  Google Scholar 

  29. Liu, H. L., et al. (2014). Design and experimental evaluation of a 256-channel dual-frequency ultrasound phased-array system for transcranial blood-brain barrier opening and brain drug delivery. IEEE transactions on bio-medical engineering, 61(4), 1350–1360. https://doi.org/10.1109/TBME.2014.2305723

    Article  Google Scholar 

  30. Liu, H. L., Chen, H. W., Kuo, Z. H., & Huang, W. C. (2008). Design and experimental evaluations of a low-frequency hemispherical ultrasound phased-array system for transcranial blood-brain barrier disruption. IEEE transactions on bio-medical engineering, 55(10), 2407–2416. https://doi.org/10.1109/TBME.2008.925697

    Article  Google Scholar 

  31. O’Reilly, M. A., Jones, R. M., & Hynynen, K. (2014). Three-dimensional transcranial ultrasound imaging of microbubble clouds using a sparse hemispherical array. IEEE transactions on bio-medical engineering, 61(4), 1285–1294. https://doi.org/10.1109/tbme.2014.2300838

    Article  Google Scholar 

  32. Ebbini, E. S., Yao, H., & Shrestha, A. (2006). Dual-mode ultrasound phased arrays for image-guided surgery. Ultrasonic imaging, 28(2), 65–82. https://doi.org/10.1177/016173460602800201

    Article  Google Scholar 

  33. Casper, A. J., Liu, D., Ballard, J. R., & Ebbini, E. S. (2013). Real-time implementation of a dual-mode ultrasound array system: in vivo results. IEEE transactions on bio-medical engineering, 60(10), 2751–2759. https://doi.org/10.1109/TBME.2013.2264484

    Article  Google Scholar 

  34. Haritonova, A., Liu, D., & Ebbini, E. S. (2015). In Vivo application and localization of transcranial focused ultrasound using dual-mode ultrasound arrays. Ieee Transactions On Ultrasonics, Ferroelectrics, And Frequency Control, 62(12), 2031–2042. https://doi.org/10.1109/TUFFC.2014.006882

    Article  Google Scholar 

  35. Tsai, C. H., Zhang, J. W., Liao, Y. Y., & Liu, H. L. (2016). Real-time monitoring of focused ultrasound blood-brain barrier opening via subharmonic acoustic emission detection: implementation of confocal dual-frequency piezoelectric transducers. Physics In Medicine & Biology, 61(7), 2926–2946. https://doi.org/10.1088/0031-9155/61/7/2926

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology (with the grant number of 108-2221-E-002 -176 -MY3 and 108-2221-E-002 -175 -MY3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao-Li Liu.

Ethics declarations

Conflict of interest declariation

H. L. Liu served as a technical consultant of NaviFUS Corp., Taiwan and currently holds a number of therapeutic ultrasound related patents.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoang, T.N., Lin, HC., Tsai, CH. et al. Passive Cavitation Enhancement Mapping via an Ultrasound Dual-Mode phased array to monitor blood-brain barrier opening. J. Med. Biol. Eng. 42, 757–766 (2022). https://doi.org/10.1007/s40846-022-00735-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-022-00735-2

Keywords

Navigation