Skip to main content
Log in

ANNs modeling of the normal and modified biosorbent capacities using two outputs in the removal of Pb (II)

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

This study accurately predicts the biosorbent capacities of normal and modified Abies bornmulleriana cone in removing Pb (II) ions from synthetic aqueous waters using artificial neural networks (ANNs) of two outputs and a single model structure. In the present research, the neural networks’ input parameters are biosorbate concentration, biosorption time, particle size, biosorbent amount, agitation rate, pH, and temperature. The biosorbent capacities of Pb (II) ions were selected as the experimental responses. The optimal network design is (7:7-9-2:2). Sensitive analysis was employed to reveal the relative relationship among model input parameters of ANNs. The biosorption time was determined as the most critical parameter affecting the biosorbent capacities of Pb (II) ions. The ANNs model employed in Pb (II) removing using normal and modified Abies bornmulleriana cone had determination coefficients of (0.982, 0.976), standard deviation ratios of (0.13, 0.15), root-mean-square errors of (3.59, 5.78), and mean absolute errors of (0.28, 1.16). The results acquired from the network signify that the ANNs model of two outputs could accurately predict the normal and modified biosorbent capacities in the removal of Pb (II) ions from aqueous water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aber S, Amani-Ghadim AR, Mirzajani V (2009) Removal of Cr (VI) from polluted solutions by electrocoagulation: modeling of experimental results using artificial neural network. J Hazard Mater 171:484–490

    Article  CAS  Google Scholar 

  • Ahmed S, Islam MR, Ferdousi J, Iqbal TS (2017) probiotic Lactobacillus sp. with bioremediation potential of toxic heavy metals. J Microbiol 34:43–46

    Google Scholar 

  • Akar ST, Gorgulu A, Anilan B et al (2009) Investigation of the biosorption characteristics of lead (II) ions onto Symphoricarpus albus: batch and dynamic flow studies. J Hazard Mater 165:126–133

    Article  CAS  Google Scholar 

  • Akdogan A, Arslan kartal A, Gok C (2021) Lead biosorption by magnetic Pisum sativum peel biocomposite using experimental design. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2021.1969377

    Article  Google Scholar 

  • Al-Garni SM (2005) Biosorption of lead by Gram-ve capsulated and non-capsulated bacteria. Water Sa 31:345–350

    CAS  Google Scholar 

  • Asadi F, Shariatmadari H, Mirghaffari N (2008) Modification of rice hull and sawdust sorptive characteristics for remove heavy metals from synthetic solutions and wastewater. J Hazard Mater 154:451–458

    Article  CAS  Google Scholar 

  • Basu M, Guha AK, Ray L (2019) Adsorption of lead on lentil husk in fixed bed column bioreactor. Biores Technol 283:86–95

    Article  CAS  Google Scholar 

  • Chen Z, Pan X, Chen H et al (2016) Biomineralization of Pb (II) into Pb-hydroxyapatite induced by bacillus cereus 12–2 isolated from lead-zinc mine tailings. J Hazard Mater 301:531–537

    Article  CAS  Google Scholar 

  • Dai J, Cen F, Ji J et al (2012) Biosorption of lead (II) in aqueous solution by spent mushroom Tricholoma lobayense. Water Environ Res 84:291–298

    Article  CAS  Google Scholar 

  • Elmolla ES, Chaudhuri M, Eltoukhy MM (2010) The use of artificial neural network (ANN) for modeling of COD removal from antibiotic aqueous solution by the Fenton process. J Hazard Mater 179:127–134

    Article  CAS  Google Scholar 

  • Fagundes-Klen MR, Ferri P, Martins TD et al (2007) Equilibrium study of the binary mixture of cadmium–zinc ions biosorption by the Sargassum filipendula species using adsorption isotherms models and neural network. Biochem Eng J 34:136–146

    Article  CAS  Google Scholar 

  • Ge Y, Li Z (2018) Application of lignin and its derivatives in adsorption of heavy metal ions in water: a review. ACS Sustain Chem Eng 6:7181–7192

    Article  CAS  Google Scholar 

  • Ghaedi AM, Ghaedi M, Pouranfard AR et al (2016) Adsorption of triamterene on multi-walled and single-walled carbon nanotubes: artificial neural network modeling and genetic algorithm optimization. J Mol Liq 216:654–665

    Article  CAS  Google Scholar 

  • Giri AK, Patel RK, Mahapatra SS (2011) Artificial neural network (ANN) approach for modelling of arsenic (III) biosorption from aqueous solution by living cells of Bacillus cereus biomass. Chem Eng J 178:15–25

    Article  CAS  Google Scholar 

  • Gordon C (1994) The use of cross-validation in neural network extrapolation of forest tree growth. In: Proceedings of the Pattern Recognition Association of South Africa, pp 1–12

  • Gupta SS, Bhattacharyya KG (2008) Immobilization of Pb (II), Cd (II) and Ni (II) ions on kaolinite and montmorillonite surfaces from aqueous medium. J Environ Manag 87:46–58

    Article  CAS  Google Scholar 

  • Gupta VK, Carrott PJM, Ribeiro Carrott MML, Suhas (2009) Low-cost adsorbents: growing approach to wastewater treatment—a review. Critical Rev Environ Sci Technol 39:783–842

  • Hagan MT, Demuth HB, Beale MH (1996) Neural Network Design (PWS, Boston, MA). Google Scholar Google Scholar Digital Library Digital Library

  • Hammo MM, Akar T, Sayin F et al (2021) Efficacy of green waste-derived biochar for lead removal from aqueous systems: characterization, equilibrium, kinetic and application. J Environ Manage 289:112490

    Article  CAS  Google Scholar 

  • Indolean C, Măicăneanu A, Cristea V (2017) Prediction of Cu (II) biosorption performances on wild mushrooms Lactarius piperatus using artificial neural networks (ANN) model. Canadian J Chem Eng 95:615–622

    Article  CAS  Google Scholar 

  • Jalali A, Mirnezami F, Lotfi M et al (2021) Biosorption of lead ion from aqueous environment using wheat stem biomass. Desalination Water Treat 233:98–105

    Article  CAS  Google Scholar 

  • Jun LY, Karri RR, Yon LS et al (2020) Modeling and optimization by particle swarm embedded neural network for adsorption of methylene blue by jicama peroxidase immobilized on buckypaper/polyvinyl alcohol membrane. Environ Res 183:109158

    Article  CAS  Google Scholar 

  • Kundu P, Paul V, Kumar V, Mishra IM (2015) Formulation development, modeling and optimization of emulsification process using evolving RSM coupled hybrid ANN-GA framework. Chem Eng Res Des 104:773–790

    Article  CAS  Google Scholar 

  • Loukidou MX, Zouboulis AI, Karapantsios TD, Matis KA (2004) Equilibrium and kinetic modeling of chromium (VI) biosorption by Aeromonas caviae. Colloids Surf, A 242:93–104

    Article  CAS  Google Scholar 

  • Mihaela Predescu A, Matei E, Râpă M et al (2019) Adsorption of lead (II) from aqueous solution using chitosan and polyvinyl alcohol blends. Anal Lett 52:2365–2392

    Article  CAS  Google Scholar 

  • Nathan RJ, Martin CE, Barr D, Rosengren RJ (2021) Simultaneous removal of heavy metals from drinking water by banana, orange and potato peel beads: a study of biosorption kinetics. Appl Water Sci 11:1–15

    Article  Google Scholar 

  • Oguz E (2017) Fixed-bed column studies on the removal of Fe3+ and neural network modelling. Arab J Chem 10:313–320

    Article  CAS  Google Scholar 

  • Oguz E (2020) Simultaneous removal of lead, copper, cadmium, nickel, and cobalt heavy metal ions from the quinary system by Abies bornmulleriana cones. Water Sci Technol 82:3032–3046

    Article  CAS  Google Scholar 

  • Oguz E (2021a) Alkali modified Abies bornmulleriana cones as a costeffective biosorbent for enhanced removal of Pb (II) ions, and its comparison with normal biosorbent: isotherm, kinetic, and thermodynamic parameters. Environ Prog Sustain Energy 40:e13659

    Article  CAS  Google Scholar 

  • Oguz E (2021) Comparative study of natural and modified Abies bornmulleriana cones in the removal of copper (II) ions. Int J Environ Sci Technol 19(6):5343–5358. https://doi.org/10.1007/s13762-021-03496-8

    Article  CAS  Google Scholar 

  • Oguz E, Ersoy M (2010) Removal of Cu2+ from aqueous solution by adsorption in a fixed bed column and Neural network modelling. Chem Eng J 164:56–62

    Article  CAS  Google Scholar 

  • Oguz E, Ersoy M (2014) Biosorption of cobalt (II) with sunflower biomass from aqueous solutions in a fixed bed column and neural networks modelling. Ecotoxicol Environ Saf 99:54–60

    Article  CAS  Google Scholar 

  • Oguz E, Utku M (2019) Pore characterization and FTIR spectras of yellow squash particles and adaptive neuro-fuzzy inference system modelling of the breakthrough curves of reactive B lue 21 dyestuff in a fixed-bed column. Environ Prog Sustain Energy 38:S110–S117

    Article  CAS  Google Scholar 

  • Oguz E, Utku M (2021) Adaptive neuro-fuzzy inference system modeling of reactive red 250 dyestuff sorption to Cucurbita moschata rind in a fixed-bed column. Environ Eng Sci 38:645–653

    Article  CAS  Google Scholar 

  • Okoli CP, Diagboya PN, Anigbogu IO et al (2017) Competitive biosorption of Pb (II) and Cd (II) ions from aqueous solutions using chemically modified moss biomass (Barbula lambarenensis). Environ Earth Sci 76:1–10

    Article  CAS  Google Scholar 

  • Özcan AS, Tunali S, Akar T, Özcan A (2009) Biosorption of lead (II) ions onto waste biomass of Phaseolus vulgaris L.: estimation of the equilibrium, kinetic and thermodynamic parameters. Desalination 244:188–198

    Article  Google Scholar 

  • Özdemir S, Yalçın MS, Kılınç E (2021) Preconcentrations of Ni (II) and Pb (II) from water and food samples by solid-phase extraction using Pleurotus ostreatus immobilized iron oxide nanoparticles. Food Chem 336:127675

    Article  Google Scholar 

  • Paliulis D (2021) Removal of lead (II) and zinc (II) from aqueous solutions applying Fibber Hemp (L.). Ecol Chem Eng S 28:229–239

    CAS  Google Scholar 

  • Pareek VK, Brungs MP, Adesina AA, Sharma R (2002) Artificial neural network modeling of a multiphase photodegradation system. J Photochem Photobiol, A 149:139–146

    Article  CAS  Google Scholar 

  • Rahman Z, Thomas L, Singh VP (2019) Biosorption of heavy metals by a lead (Pb) resistant bacterium, Staphylococcus hominis strain AMB-2. J Basic Microbiol 59:477–486

    Article  CAS  Google Scholar 

  • Riskuwa-Shehu ML, Ismail HY, Ijah UJJ (2020) Heavy metal resistance by endophytic bacteria isolated from guava (Psidium guajava) and mango (Mangifera indica) leaves. Int Annals Sci 9:16–23

    Article  Google Scholar 

  • Salari D, Daneshvar N, Aghazadeh F, Khataee AR (2005) Application of artificial neural networks for modeling of the treatment of wastewater contaminated with methyl tert-butyl ether (MTBE) by UV/H2O2 process. J Hazard Mater 125:205–210

    Article  CAS  Google Scholar 

  • Salazar-Pinto BM, Zea-Linares V, Villanueva-Salas JA, Gonzales-Condori EG (2020) Cd (II) and Pb (II) biosorption in aqueous solutions using agricultural residues of Phaseolus vulgaris L.: optimization, kinetics, isotherms and desorption. Revista Mexicana de Ingeniería Química 20(1):305–322. https://doi.org/10.24275/rmiq/IA1864ss

    Article  Google Scholar 

  • Salmana SM, Zahoorb M, Majeeda A et al (2021) Effective removal of Cd (II), Pb (II) and Cr (VI) from aqueous solution using Bauhinia variegata leaves after chemical modifications. Desalination Water Treat 220:182–191

    Article  Google Scholar 

  • Tschetter MJ, Bachman RZ (1974) Rapid EDTA determination of lead in binary alloys of lead and tin. Talanta 21:106–109

    Article  CAS  Google Scholar 

  • Villarrubia G, De Paz JF, Chamoso P, De la Prieta F (2018) Artificial neural networks used in optimization problems. Neurocomputing 272:10–16

    Article  Google Scholar 

  • Wang J, Chen C (2006) Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv 24:427–451

    Article  CAS  Google Scholar 

  • Yetilmezsoy K, Demirel S (2008) Artificial neural network (ANN) approach for modeling of Pb (II) adsorption from aqueous solution by Antep pistachio (Pistacia Vera L.) shells. J Hazard Mater 153:1288–1300

    Article  CAS  Google Scholar 

  • Zhang Y, Pan B (2014) Modeling batch and column phosphate removal by hydrated ferric oxide-based nanocomposite using response surface methodology and artificial neural network. Chem Eng J 249:111–120

    Article  CAS  Google Scholar 

  • Zhang B, Fan R, Bai Z et al (2013) Biosorption characteristics of Bacillus gibsonii S-2 waste biomass for removal of lead (II) from aqueous solution. Environ Sci Pollut Res 20:1367–1373

    Article  CAS  Google Scholar 

  • Zhang X, Hao Y, Wang X et al (2016) Competitive adsorption of cadmium(II) and mercury(II) ions from aqueous solutions by activated carbon from Xanthoceras sorbifolia Bunge Hull. J Chem 2016:1–10. https://doi.org/10.1155/2016/4326351

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank all who assisted in conducting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Oguz.

Additional information

Editorial responsibility: Fatih ŞEN.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oguz, E. ANNs modeling of the normal and modified biosorbent capacities using two outputs in the removal of Pb (II). Int. J. Environ. Sci. Technol. 20, 5143–5154 (2023). https://doi.org/10.1007/s13762-022-04445-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-022-04445-9

Keywords

Navigation