Skip to main content

Advertisement

Log in

The relationship between two Synechococcus strains and heterotrophic bacterial communities and its associated carbon flow

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Synechococcus accounts for a considerable proportion of oceanic carbon fixation and has close relation with heterotrophic bacteria at sub-micrometre scales. However, the relationship between Synechococcus and heterotrophic bacteria and their impacts on oceanic carbon flow is not well understood. Here, we separately co-cultured the heterotrophic bacterial community with two different axenic Synechococcus strains, i.e. Synechococcus sp. PCC7002 and Synechococcus sp. CCMP1334. The dissolved organic carbon (DOC) released by Synechococcus promoted the rapid growth of heterotrophic bacteria. Due in part to the slight differences in the Synechococcus-derived DOC composition, the starting heterotrophic bacterial community was reshaped by the two Synechococcus strains into significantly divergent community structures, suggesting that different heterotrophic bacterial communities may gather around different Synechococcus strains and interact with each other in the oceans. Interestingly, the two Synechococcus strains also released some very stable humic-like DOC components that resisted use by heterotrophic bacteria and were gradually accumulated in seawater, implying that in addition to photosynthetic carbon fixation, Synechococcus may also play an important role in long-term ocean carbon sequestration by producing relatively recalcitrant DOC. Moreover, the interactions of Synechococcus and the heterotrophic bacterial communities could increase aggregate formation and particle sinking, which can likely enhance the contribution of Synechococcus to the magnitude of the sinking biological carbon pump in the oceans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The sequences used in the study have been deposited into the NCBI Sequence Read Archive and are available under the accession number PRJNA637938.

References

  • Azam F, Malfatti F (2007) Microbial structuring of marine ecosystems. Nat Rev Microbiol 5:782–791

    Article  CAS  PubMed  Google Scholar 

  • Azam F, Fenchel T, Field J, Gray J, Meyer-Reil L, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263

    Article  Google Scholar 

  • Biller SJ, Berube PM, Lindell D, Chisholm SW (2015) Prochlorococcus: the structure and function of collective diversity. Nat Rev Microbiol 13:13–27

    Article  CAS  PubMed  Google Scholar 

  • Bridgeman J, Bieroza M, Baker A (2011) The application of fluorescence spectroscopy to organic matter characterisation in drinking water treatment. Rev Environ Sci Biotechnol 10:277–290

    Article  CAS  Google Scholar 

  • Buitenhuis ET, Li WKW, Vaulot D, Lomas MW, Landry MR, Partensky F, Karl DM, Ulloa O, Campbell L, Jacquet S, Lantoine F, Chavez F, Macias D, Gosselin M, McManus GB (2012) Picophytoplankton biomass distribution in the global ocean. Earth Syst Sci Data 4:37–46

    Article  Google Scholar 

  • Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR, Baylis M, Behrenfeld MJ, Boetius A, Boyd PW, Classen AT, Crowther TW, Danovaro R, Foreman CM, Huisman J, Hutchins DA, Jansson JK, Karl DM, Koskella B, Mark Welch DB, Martiny JBH, Moran MA, Orphan VJ, Reay DS, Remais JV, Rich VI, Singh BK, Stein LY, Stewart FJ, Sullivan MB, van Oppen MJH, Weaver SC, Webb EA, Webster NS (2019) Scientists’ warning to humanity: microorganisms and climate change. Nat Rev Microbiol 17:569–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Li H, Zhang Z, He C, Shi Q, Jiao N, Zhang Y (2020) DOC dynamics and bacterial community succession during long-term degradation of Ulva prolifera and their implications for the legacy effect of green tides on refractory DOC pool in seawater. Water Res 185:116268

    Article  CAS  PubMed  Google Scholar 

  • Chisholm SW (2000) Oceanography: stirring times in the Southern Ocean. Nature 407:685–687

    Article  CAS  PubMed  Google Scholar 

  • Cirri E, Pohnert G (2019) Algae-bacteria interactions that balance the planktonic microbiome. New Phytol 223:100–106

    Article  PubMed  Google Scholar 

  • Coble PG, Del Castillo CE, Avril B (1998) Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon. Deep-Sea Res II 45:2195–2223

    Article  CAS  Google Scholar 

  • Cole (1982) Interactions between bacteria and algae in aquatic ecosystems. Annu Rev Ecol Syst 13:291–314

    Article  Google Scholar 

  • Cruz BN, Neuer S (2019) Heterotrophic bacteria enhance the aggregation of the marine picocyanobacteria Prochlorococcus and Synechococcus. Front Microbiol 10:1864

    Article  PubMed  PubMed Central  Google Scholar 

  • Edgar RC (2016) UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. bioRxiv:081257 https://doi.org/10.1101/081257

  • Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240

    Article  CAS  PubMed  Google Scholar 

  • Fox BG, Thorn RMS, Anesio AM, Reynolds DM (2017) The in situ bacterial production of fluorescent organic matter; an investigation at a species level. Water Res 125:350–359

    Article  CAS  PubMed  Google Scholar 

  • Gaerdes A, Iversen MH, Grossart H-P, Passow U, Ullrich MS (2011) Diatom-associated bacteria are required for aggregation of Thalassiosira weissflogii. ISME J 5:436–445

    Article  CAS  Google Scholar 

  • Giovannoni SJ, Stingl U (2005) Molecular diversity and ecology of microbial plankton. Nature 437:343–348

    Article  CAS  PubMed  Google Scholar 

  • Grossart HP, Czub G, Simon M (2006) Algae–bacteria interactions and their effects on aggregation and organic matter flux in the sea. Environ Microbiol 8:1074–1084

    Article  PubMed  Google Scholar 

  • Guidi L, Chaffron S, Bittner L, Eveillard D, Larhlimi A, Roux S, Darzi Y, Audic S, Berline L, Brum J, Coelho LP, Espinoza JCI, Malviya S, Sunagawa S, Dimier C, Kandels-Lewis S, Picheral M, Poulain J, Searson S, Tara Oceans C, Stemmann L, Not F, Hingamp P, Speich S, Follows M, Karp-Boss L, Boss E, Ogata H, Pesant S, Weissenbach J, Wincker P, Acinas SG, Bork P, de Vargas C, Iudicone D, Sullivan MB, Raes J, Karsenti E, Bowler C, Gorsky G (2016) Plankton networks driving carbon export in the oligotrophic ocean. Nature 532:465–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo R, Liang Y, Xin Y, Wang L, Mou S, Cao C, Xie R, Zhang C, Tian J, Zhang Y (2018) Insight into the pico- and nano-phytoplankton communities in the deepest biosphere, the Mariana Trench. Front Microbiol 9:02289

    Article  Google Scholar 

  • Jardillier L, Zubkov MV, Pearman J, Scanlan DJ (2010) Significant CO2 fixation by small prymnesiophytes in the subtropical and tropical northeast Atlantic Ocean. ISME J 4:1180–1192

    Article  CAS  PubMed  Google Scholar 

  • Jiao N, Herndl GJ, Hansell DA, Benner R, Kattner G, Wilhelm SW, Kirchman DL, Weinbauer MG, Luo T, Chen F, Azam F (2010) Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nat Rev Microbiol 8:593–599

    Article  CAS  PubMed  Google Scholar 

  • Josefsen MH, Andersen SC, Christensen J, Hoorfar J (2015) Microbial food safety: Potential of DNA extraction methods for use in diagnostic metagenomics. J Microbiol Methods 114:30–34

    Article  CAS  PubMed  Google Scholar 

  • Kinsey JD, Corradino G, Ziervogel K, Schnetzer A, Osburn CL (2018) Formation of chromophoric dissolved organic matter by bacterial degradation of phytoplankton-derived aggregates. Front Mar Sci 4:00430

    Article  Google Scholar 

  • Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kramer GD, Herndl GJ (2004) Photo-and bioreactivity of chromophoric dissolved organic matter produced by marine bacterioplankton. Aquat Microb Ecol 36:239–246

    Article  Google Scholar 

  • Liang Y, Zhang Y, Zhang Y, Luo T, Rivkin RB, Jiao N (2016) Distributions and relationships of virio- and picoplankton in the epi-, meso- and bathypelagic zones of the Western Pacific Ocean. FEMS Microbiol Ecol 93. https://doi.org/10.1093/femsec/fiw238

  • Liu J, Jiao N, Tang K (2014) An experimental study on the effects of nutrient enrichment on organic carbon persistence in the western Pacific oligotrophic gyre. Biogeosciences 11:5115–5122

    Article  Google Scholar 

  • Ludwig M, Bryant D (2011) Transcription profiling of the model cyanobacterium Synechococcus sp. strain PCC 7002 by Next-Gen (SOLiD™) sequencing of cDNA. Front Microbiol 2 https://doi.org/10.3389/fmicb.2011.00041

  • Malfatti F, Azam F (2009) Atomic force microscopy reveals microscale networks and possible symbioses among pelagic marine bacteria. Aquat Microb Ecol 58:1–14

    Article  Google Scholar 

  • Malfatti F, Samo TJ, Azam F (2010) High-resolution imaging of pelagic bacteria by atomic force microscopy and implications for carbon cycling. ISME J 4:427–439

    Article  PubMed  Google Scholar 

  • Murphy KR, Butler KD, Spencer RG, Stedmon CA, Boehme JR, Aiken GR (2010) Measurement of dissolved organic matter fluorescence in aquatic environments: an interlaboratory comparison. Environ Sci Technol 44:9405–9412

    Article  CAS  PubMed  Google Scholar 

  • Powell RJ, Hill RT (2013) Rapid aggregation of biofuel-producing algae by the bacterium Bacillus sp. strain RP1137. Appl Environ Microbiol 79 https://doi.org/10.1128/AEM.01496-13

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596

    Article  CAS  Google Scholar 

  • Rippka R, Stanier RY, Deruelles J, Herdman M, Waterbury JB (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Romera-Castillo C, Sarmento H, Alvarez-Salgado XA, Gasol JM, Marrase C (2011) Net production and consumption of fluorescent colored dissolved organic matter by natural bacterial assemblages growing on marine phytoplankton exudates. Appl Environ Microbiol 77:7490–7498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarmento H, Morana C, Gasol JM (2016) Bacterioplankton niche partitioning in the use of phytoplankton-derived dissolved organic carbon: quantity is more important than quality. ISME J 10:2582–2592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scully N, Lean D (1994) The attenuation of ultraviolet radiation in temperate lakes. Erg Limnol 43:135–135

    Google Scholar 

  • Seymour JR, Ahmed T, Durham WM, Stocker R (2010) Chemotactic response of marine bacteria to the extracellular products of Synechococcus and Prochlorococcus. Aquat Microb Ecol 59:161–168

    Article  Google Scholar 

  • Seymour JR, Amin SA, Raina J-B, Stocker R (2017) Zooming in on the phycosphere: the ecological interface for phytoplankton–bacteria relationships. Nat Microbiol 2:17065

    Article  CAS  PubMed  Google Scholar 

  • Sonnenschein EC, Syit DA, Grossart H-P, Ullrich MS (2012) Chemotaxis of Marinobacter adhaerens and its impact on attachment to the diatom Thalassiosira weissflogi. Appl Environ Microbiol 78:6900–6907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stedmon CA, Bro R (2008) Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnol Oceanogr 6:572–579

    Article  CAS  Google Scholar 

  • Waterbury JB, Watson SW, Valois FW, Franks DG (1986) Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus. In: Platt T, Li WKW (eds) Photosynthetic Picoplankton. Canadian Department of Fisheries and Oceans, Ottawa, pp 71–120

    Google Scholar 

  • Wei Y, Sun J, Zhang X, Wang J, Huang K (2019) Picophytoplankton size and biomass around equatorial eastern Indian Ocean. MicrobiologyOpen 8:e00629

    Article  PubMed  Google Scholar 

  • Yamashita Y, Jaffé R, Maie N, Tanoue E (2008) Assessing the dynamics of dissolved organic matter (DOM) in coastal environments by excitation emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC). Limnol Oceanogr 53:1900–1908

    Article  CAS  Google Scholar 

  • Zhang Y, Zhang J, Liang Y, Li H, Li G, Chen X, Zhao P, Jiang Z, Zou D, Liu X, Liu J (2017a) Carbon sequestration processes and mechanisms in coastal mariculture environments in China. Sci China Earth Sci 60:2097–2107

    Article  CAS  Google Scholar 

  • Zhang Y, Zhao M, Cui Q, Fan W, Qi J, Chen Y, Zhang Y, Gao K, Fan J, Wang G, Yan C, Lu H, Luo Y, Zhang Z, Zheng Q, Xiao W, Jiao N (2017b) Processes of coastal ecosystem carbon sequestration and approaches for increasing carbon sink. Sci China Earth Sci 60:809–820

    Article  CAS  Google Scholar 

  • Zhang Y, He P, Li H, Li G, Liu J, Jiao F, Zhang J, Huo Y, Shi X, Su R, Ye N, Liu D, Yu R, Wang Z, Zhou M, Jiao N (2019) Ulva prolifera green-tide outbreaks and their environmental impact in the Yellow Sea, China. Natl Sci Rev 6:825–838

    Article  CAS  Google Scholar 

  • Zhao Z, Gonsior M, Luek J, Timko S, Ianiri H, Hertkorn N, Schmitt-Kopplin P, Fang X, Zeng Q, Jiao N, Chen F (2017) Picocyanobacteria and deep-ocean fluorescent dissolved organic matter share similar optical properties. Nat Commun 8:15284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Z, Gonsior M, Schmitt-Kopplin P, Zhan Y, Zhang R, Jiao N, Chen F (2019) Microbial transformation of virus-induced dissolved organic matter from picocyanobacteria: coupling of bacterial diversity and DOM chemodiversity. ISME J 13:2551–2565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Q, Chen Q, Cai R, He C, Guo W, Wang Y, Shi Q, Chen C, Jiao N (2019) Molecular characteristics of microbially mediated transformations of Synechococcus-derived dissolved organic matter as revealed by incubation experiments. Environ Microbiol 21:2533–2543

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China (2016YFA0601402), the Senior User Project of RV KEXUE (KEXUE2019GZ03) supported by Center for Ocean Mega-Science, Chinese Academy of Sciences, NSFC projects (no. 31700104, U1906216), a Key R&D projects in Shandong Province (2019GHY112037), the DICP&QIBEBT (DICP&QIBEBT UN201803), the QIBEBT (QIBEBT ZZBS 201805), Dalian National Laboratory For Clean Energy (DNL), CAS, and Key Lab of Marine Bioactive Substance and Modern Analytical Technique, SOA (MBSMAT-2018-02). This study is a contribution to the international IMBER project.

Author information

Authors and Affiliations

Authors

Contributions

Zenghu Zhang: formal analysis, visualization, writing—original draft. Lili Tang: investigation, validation, writing—original draft. Yantao Liang: methodology. Gang Li: writing—review and editing. Hongmei Li: methodology. Richard B. Rivkin: validation. Nianzhi Jiao: supervision. Yongyu Zhang: conceptualization, supervision, writing—review and editing.

Corresponding author

Correspondence to Yongyu Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 2630 kb)

ESM 2

(XLSX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Tang, L., Liang, Y. et al. The relationship between two Synechococcus strains and heterotrophic bacterial communities and its associated carbon flow. J Appl Phycol 33, 953–966 (2021). https://doi.org/10.1007/s10811-020-02343-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-020-02343-6

Keywords

Navigation