Skip to main content

Advertisement

Log in

Subfossil chironomid head capsules reveal assemblage differences in permanent and temporary wetlands of south-eastern Australia

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Subfossil chironomid head capsules have been used extensively as proxies to characterise past environmental conditions of waterbodies. To date, their potential to distinguish between temporary and permanent waterbodies has not been determined. This study set out to assess if subfossil chironomid head capsules could be used to distinguish between temporary and permanent floodplain wetlands from the Ovens River, south-eastern Australia. Twenty-six taxa were collected in both wetland types: one taxon (Paracladopelma spp.) was found exclusively in permanent wetlands; and five taxa (Cladopelma spp., Cryptochironomus spp., Microchironomus spp., Microtendipes spp. and Cricotopus spp.) were found exclusively in temporary wetlands. The overall concentrations of chironomid head capsules were greater in permanent than temporary wetlands. Furthermore, eight taxa were found in significantly higher concentrations in permanent than temporary wetlands but, apart from the unique taxa, the concentrations of no other taxa were significantly greater in the temporary than permanent wetlands. The temporary and permanent wetlands had distinct chironomid assemblages, as evidenced by the abundance and presence/absence data. This study highlights the importance of heterogeneity in the environment to maintain chironomid diversity and suggests that chironomid subfossils have the potential to be useful in palaeoecological studies aiming to reconstruct past changes in hydrology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Armitage, P. D., L. Pinder & P. Cranston, 2012. The Chironomidae: Biology and Ecology of Non-biting Midges. Springer, Berlin.

    Google Scholar 

  • Arthington, A. H. & B. J. Pusey, 2003. Flow restoration and protection in Australian rivers. River Research and Applications 19: 377–395.

    Article  Google Scholar 

  • Babbitt, K. J. & G. W. Tanner, 2000. Use of temporary wetlands by anurans in a hydrologically modified landscape. Wetlands 20: 313–322.

    Article  Google Scholar 

  • Baber, M. J., D. L. Childers, K. J. Babbitt & D. H. Anderson, 2002. Controls on fish distribution and abundance in temporary wetlands. Canadian Journal of Fisheries and Aquatic Sciences 59: 1441–1450.

    Article  Google Scholar 

  • Batzer, D. P. & S. A. Wissinger, 1996. Ecology of insect communities in nontidal wetlands. Annual Review of Entomology 41: 75–100.

    Article  CAS  PubMed  Google Scholar 

  • Batzer, D. P., C. R. Pusateri & R. Vetter, 2000. Impacts of fish predation on marsh invertebrates: direct and indirect effects. Wetlands 20: 307–312.

    Article  Google Scholar 

  • Bazzanti, M. & V. D. Bella, 2004. Functional feeding and habit organization of macroinvertebrate communities in permanent and temporary ponds in central Italy. Journal of Freshwater Ecology 19: 493–497.

    Article  Google Scholar 

  • Bazzanti, M., M. Seminara & S. Baldoni, 1997. Chironomids (Diptera: Chironomidae) from three temporary ponds of different wet phase duration in Central Italy. Journal of Freshwater Ecology 12: 89–99.

    Article  CAS  Google Scholar 

  • Bjørnstad, O. N. & B. T. Grenfell, 2001. Noisy clockwork: time series analysis of population fluctuations in animals. Science 293: 638–643.

    Article  PubMed  Google Scholar 

  • Boix, D., J. Sala & R. Moreno-Amich, 2001. The faunal composition of Espolla pond (NE Iberian peninsula): the neglected biodiversity of temporary waters. Wetlands 21: 577–592.

    Article  Google Scholar 

  • Botts, P., 1997. Spatial pattern, patch dynamics and successional change: chironomid assemblages in a Lake Erie coastal wetland. Freshwater Biology 37: 277–286.

    Article  Google Scholar 

  • Boulton, A., M. Brock, B. Robson, D. Ryder, J. Chambers & J. Davis, 2014. Australian Freshwater Ecology: Processes and Management. Wiley, New York.

    Google Scholar 

  • Brock, M., D. L. Nielsen, R. J. Shiel, J. D. Green & J. D. Langley, 2003. Drought and aquatic community resilience: the role of eggs and seeds in sediments of temporary wetlands. Freshwater Biology 48: 1207–1218.

    Article  Google Scholar 

  • Brodersen, K. P. & N. Anderson, 2002. Distribution of chironomids (Diptera) in low arctic West Greenland lakes: trophic conditions, temperature and environmental reconstruction. Freshwater Biology 47: 1137–1157.

    Article  Google Scholar 

  • Brodersen, K. P. & C. Lindegaard, 1997. Significance of subfossil chironomid remains in classification of shallow lakes. Hydrobiologia 342: 125–132.

    Article  Google Scholar 

  • Brodersen, K. P. & C. Lindegaard, 1999. Classification, assessment and trophic reconstruction of Danish lakes using chironomids. Freshwater Biology 42: 143–157.

    Article  Google Scholar 

  • Brooks, R. T., 2000. Annual and seasonal variation and the effects of hydroperiod on benthic macroinvertebrates of seasonal forest (“vernal”) ponds in central Massachusetts, USA. Wetlands 20: 707–715.

    Article  Google Scholar 

  • Brooks, S. J., 2006. Fossil midges (Diptera: Chironomidae) as palaeoclimatic indicators for the Eurasian region. Quaternary Science Reviews 25: 1894–1910.

    Article  Google Scholar 

  • Bunn, S. E. & A. H. Arthington, 2002. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management 30: 492–507.

    Article  PubMed  Google Scholar 

  • Chang, J. C., J. Shulmeister & C. Woodward, 2015. A chironomid based transfer function for reconstructing summer temperatures in southeastern Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 423: 109–121.

    Article  Google Scholar 

  • Chick, J. H., C. R. Ruetz & J. C. Trexler, 2004. Spatial scale and abundance patterns of large fish communities in freshwater marshes of the Florida Everglades. Wetlands 24: 652–664.

    Article  Google Scholar 

  • Clarke, K. R., 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18: 117–143.

    Article  Google Scholar 

  • Clarke, K. R. & R. N. Gorley, 2006. PRIMER V6: User Manual – Tutorial. Plymouth Marine Laboratory, Plymouth.

    Google Scholar 

  • Clarke, K. R. & R. Warwick, 1994. Change in Marine Communities: An approach to statistical analysis and interpretation. Natural Environment Research Council, UK.

  • Cogger, H., 2014. Reptiles and Amphibians of Australia. CSIRO Publishing, Collingwood.

    Google Scholar 

  • Collinson, N., J. Biggs, A. Corfield, M. Hodson, B. Walker, M. Whitfield & P. Williams, 1995. Temporary and permanent ponds: an assessment of the effects of drying out on the conservation value of aquatic macroinvertebrate communities. Biological Conservation 74: 125–133.

    Article  Google Scholar 

  • Conover, W. J. & R. L. Iman, 1981. Rank transformations as a bridge between parametric and nonparametric statistics. The American Statistician 35: 124–129.

    Google Scholar 

  • Coquillard, P., A. Muzy & F. Diener, 2012. Optimal phenotypic plasticity in a stochastic environment minimises the cost/benefit ratio. Ecological Modelling 242: 28–36.

    Article  Google Scholar 

  • Cranston, P., 1995. Chironomids: From Genes to Ecosystems. CSIRO Australia, Melbourne.

    Google Scholar 

  • Cranston, P., 2000. Electronic identification guide to the Australian Chironomidae. Available online at http://entomology.ucdavis.edu/chiropage/index.html (accessed 30 August 2010).

  • Cucherousset, J., J.-M. Paillisson, A. Carpentier & L. J. Chapman, 2007. Fish emigration from temporary wetlands during drought: the role of physiological tolerance. Fundamental and Applied Limnology (Archiv für Hydrobiologie) 168: 169–178.

    Article  Google Scholar 

  • Davies, B. R., 1976. The dispersal of Chironomidae larvae: a review. Journal of the Entomological Society of Southern Africa 39: 39–62.

    Google Scholar 

  • Della Bella, V., M. Bazzanti & F. Chiarotti, 2005. Macroinvertebrate diversity and conservation status of Mediterranean ponds in Italy: water permanence and mesohabitat influence. Aquatic Conservation: Marine and Freshwater Ecosystems 15: 583–600.

    Article  Google Scholar 

  • Denny, P., 1994. Biodiversity and wetlands. Wetlands Ecology and Management 3: 55–611.

    Article  Google Scholar 

  • Dicke, S. G. & J. R. Toliver, 1990. Growth and development of bald-cypress/water-tupelo stands under continuous versus seasonal flooding. Forest Ecology and Management 33: 523–530.

    Article  Google Scholar 

  • Dieffenbacher-Krall, A. C., M. J. Vandergoes & G. H. Denton, 2007. An inference model for mean summer air temperatures in the Southern Alps, New Zealand, using subfossil chironomids. Quaternary Science Reviews 26: 2487–2504.

    Article  Google Scholar 

  • Diehl, S., 1992. Fish predation and benthic community structure: the role of omnivory and habitat complexity. Ecology 73: 1646–1661.

    Article  Google Scholar 

  • Engels, S. & L. C. Cwynar, 2011. Changes in fossil chironomid remains along a depth gradient: evidence for common faunal thresholds within lakes. Hydrobiologia 665: 15–38.

    Article  CAS  Google Scholar 

  • Engels, S., S. J. Bohncke, O. Heiri, K. Schaber & F. Sirocko, 2008. The lacustrine sediment record of Oberwinkler Maar (Eifel, Germany): chironomid and macro-remain-based inferences of environmental changes during Oxygen Isotope Stage 3. Boreas 37: 414–425.

    Article  Google Scholar 

  • Engels, S., L. C. Cwynar, A. B. Rees & B. N. Shuman, 2012. Chironomid-based water depth reconstructions: an independent evaluation of site-specific and local inference models. Journal of Paleolimnology 48: 693–709.

    Article  Google Scholar 

  • Finlayson, C., J. Davis, P. Gell, R. Kingsford & K. Parton, 2013. The status of wetlands and the predicted effects of global climate change: the situation in Australia. Aquatic Sciences 75: 73–93.

    Article  Google Scholar 

  • Florencio, M., L. Serrano, C. Gómez-Rodríguez, A. Millán & C. Díaz-Paniagua, 2009. Inter-and intra-annual variations of macroinvertebrate assemblages are related to the hydroperiod in Mediterranean temporary ponds. Hydrobiologia 634: 167–183.

    Article  Google Scholar 

  • Gajewski, K., G. Bouchard, S. Wilson, J. Kurek & L. Cwynar, 2005. Distribution of Chironomidae (Insecta: Diptera) head capsules in recent sediments of Canadian Arctic lakes. Hydrobiologia 549: 131–143.

    Article  Google Scholar 

  • Gandouin, E., E. Franquet & B. Van Vliet-Lanoë, 2005. Chironomids (Diptera) in river floodplains: their status and potential use for palaeoenvironmental reconstruction purposes. Archiv für Hydrobiologie 162: 511–534.

    Article  Google Scholar 

  • Gandouin, E., A. Maasri, B. Van Vliet-Lanoe & E. Franquet, 2006. Chironomid (Insecta: Diptera) assemblages from a gradient of lotic and lentic waterbodies in river floodplains of France: a methodological tool for paleoecological applications. Journal of Paleolimnology 35: 149–166.

    Article  Google Scholar 

  • Gell, P., J. Fluin, J. Tibby, D. Haynes, S. I. Khanum, B. Walsh & F. Little, 2006. Changing fluxes of sediments and salts as recorded in lower River Murray wetlands, Australia. IAHS Publication 306: 416.

    Google Scholar 

  • Gell, P., J. Fluin, J. Tibby, G. Hancock, J. Harrison, A. Zawadzki & B. Walsh, 2009. Anthropogenic acceleration of sediment accretion in lowland floodplain wetlands, Murray-Darling Basin, Australia. Geomorphology 108: 122–126.

    Article  Google Scholar 

  • Gilinsky, E., 1984. The role of fish predation and spatial heterogeneity in determining benthic community structure. Ecology 65: 455–468.

    Article  Google Scholar 

  • Halkiewicz, A., 2005. Subfossil remains of Chironomidae from two shallow lakes representing extreme alternative states. Studia Quaternaria 22: 45–49.

    Google Scholar 

  • Heiri, O., 2004. Within-lake variability of subfossil chironomid assemblages in shallow Norwegian lakes. Journal of Paleolimnology 32: 67–84.

    Article  Google Scholar 

  • Henrikson, L., J. Olofsson & H. Oscarson, 1982. The impact of acidification on Chironomidae (Diptera) as indicated by subfossil stratification. Hydrobiologia 86: 223–229.

    Article  Google Scholar 

  • Hillman, T. & G. Quinn, 2002. Temporal changes in macroinvertebrate assemblages following experimental flooding in permanent and temporary wetlands in an Australian floodplain forest. River Research and Applications 18: 137–154.

    Article  Google Scholar 

  • Hofmann, W., 1988. The significance of chironomid analysis (Insecta: Diptera) for paleolimnological research. Palaeogeography, Palaeoclimatology, Palaeoecology 62: 501–509.

    Article  Google Scholar 

  • Jenkins, K. M., A. J. Boulton & D. S. Ryder, 2005. A common parched future? Research and management of Australian arid-zone floodplain wetlands. Hydrobiologia 552: 57–73.

    Article  Google Scholar 

  • Kats, L. B., J. W. Petranka & A. Sih, 1988. Antipredator defenses and the persistence of amphibian larvae with fishes. Ecology 69: 1865–1870.

    Article  Google Scholar 

  • King, A., P. Humphries & P. Lake, 2003. Fish recruitment on floodplains: the roles of patterns of flooding and life history characteristics. Canadian Journal of Fisheries and Aquatic Sciences 60: 773–786.

    Article  Google Scholar 

  • Kingsford, R. T., 2000. Ecological impacts of dams, water diversions and river management on floodplain wetlands in Australia. Austral Ecology 25: 109–127.

    Article  Google Scholar 

  • Kingsford, R., A. Curtin & J. Porter, 1999. Water flows on Cooper Creek in arid Australia determine ‘boom’ and ‘bust’periods for waterbirds. Biological Conservation 88: 231–248.

    Article  Google Scholar 

  • Kurek, J. & L. C. Cwynar, 2009. The potential of site-specific and local chironomid-based inference models for reconstructing past lake levels. Journal of Paleolimnology 42: 37–50.

    Article  Google Scholar 

  • Larocque, I., 2001. How many chironomid head capsules are enough? A statistical approach to determine sample size for palaeoclimatic reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology 172: 133–142.

    Article  Google Scholar 

  • Layton, R. J. & J. R. Voshell, 1991. Colonization of new experimental ponds by benthic macroinvertebrates. Environmental Entomology 20: 110–117.

    Article  Google Scholar 

  • Leeper, D. & B. Taylor, 1998. Abundance, biomass and production of aquatic invertebrates in Rainbow Bay, a temporary wetland in South Carolina, USA. Archiv für Hydrobiologie 143: 335–362.

    Article  Google Scholar 

  • Legendre, P. & E. D. Gallagher, 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271–280.

    Article  PubMed  Google Scholar 

  • Leibowitz, S. G., 2003. Isolated wetlands and their functions: an ecological perspective. Wetlands 23: 517–531.

    Article  Google Scholar 

  • Madden, C. P., 2009. Key to genera of larvae of Australian Chironomidae (Diptera). TRIN Taxonomic Guide, 1. La Trobe University, Wodonga, Vic.

  • Maheshwari, B., K. Walker & T. McMahon, 1995. Effects of regulation on the flow regime of the River Murray, Australia. Regulated Rivers: Research & Management 10: 15–38.

    Article  Google Scholar 

  • Marren, P. M. & K. L. Woods, 2011. Inundation of anabranching river flood plain wetlands: the Ovens River, Victoria, Australia. Conceptual and modelling studies of integrated groundwater, surface water and ecological systems. International Association of Hydrological Sciences, Publication 345: 229–234.

    Google Scholar 

  • Massaferro, J. & I. Larocque-Tobler, 2013. Using a newly developed chironomid transfer function for reconstructing mean annual air temperature at Lake Potrok Aike, Patagonia, Argentina. Ecological Indicators 24: 201–210.

    Article  Google Scholar 

  • Medeiros, A. S. & R. Quinlan, 2011. The distribution of the Chironomidae (Insecta: Diptera) along multiple environmental gradients in lakes and ponds of the eastern Canadian Arctic. Canadian Journal of Fisheries and Aquatic Sciences 68: 1511–1527.

    Article  CAS  Google Scholar 

  • Menu, F., J. P. Roebuck & M. Viala, 2000. Bet-hedging diapause strategies in stochastic environments. The American Naturalist 155: 724–734.

    CAS  PubMed  Google Scholar 

  • Merendino, M. T. & L. M. Smith, 1991. Influence of drawdown date and reflood depth on wetland vegetation establishment. Wildlife Society Bulletin (1973–2006) 19: 143–150.

    Google Scholar 

  • Neckles, H. A., H. R. Murkin & J. A. Cooper, 1990. Influences of seasonal flooding on macroinvertebrate abundance in wetland habitats. Freshwater Biology 23: 311–322.

    Article  Google Scholar 

  • Noether, G. E., 1987. Sample size determination for some common nonparametric tests. Journal of the American Statistical Association 82: 645–647.

    Article  Google Scholar 

  • Parkinson, A., R. Mac Nally & G. P. Quinn, 2002. Differential macrohabitat use by birds on the unregulated Ovens River floodplain of southeastern Australia. River Research and Applications 18: 495–506.

    Article  Google Scholar 

  • Pazin, V. F., W. E. Magnusson, J. Zuanon & F. P. Mendonca, 2006. Fish assemblages in temporary ponds adjacent to ‘terra-firme’ streams in Central Amazonia. Freshwater Biology 51: 1025–1037.

    Article  Google Scholar 

  • Peel, M. C., B. L. Finlayson & T. A. McMahon, 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences Discussions 4(2): 439–473.

    Article  Google Scholar 

  • Quinlan, R. & J. P. Smol, 2001. Setting minimum head capsule abundance and taxa deletion criteria in chironomid-based inference models. Journal of Paleolimnology 26: 327–342.

    Article  Google Scholar 

  • Quinn, G., T. Hillman & R. Cook, 2000. The response of macroinvertebrates to inundation in floodplain wetlands: a possible effect of river regulation? Regulated Rivers 16: 469–477.

    Article  Google Scholar 

  • Real, R. & J. M. Vargas, 1996. The probabilistic basis of Jaccard’s index of similarity. Systematic Biology 45: 380–385.

    Article  Google Scholar 

  • Real, M., M. Rieradevall & N. Prat, 2000. Chironomus species (Diptera: Chironomidae) in the profundal benthos of Spanish reservoirs and lakes: factors affecting distribution patterns. Freshwater Biology 43: 1–18.

    Article  Google Scholar 

  • Rees, A. B., L. C. Cwynar & P. S. Cranston, 2008. Midges (Chironomidae, Ceratopogonidae, Chaoboridae) as a temperature proxy: a training set from Tasmania, Australia. Journal of Paleolimnology 40: 1159–1178.

    Google Scholar 

  • Reid, M. & J. Brooks, 2000. Detecting effects of environmental water allocations in wetlands of the Murray-Darling Basin, Australia. Regulated Rivers: Research & Management 16: 479–496.

    Article  Google Scholar 

  • Rolland, N. & I. Larocque, 2007. The efficiency of kerosene flotation for extraction of chironomid head capsules from lake sediments samples. Journal of Paleolimnology 37: 565–572.

    Article  Google Scholar 

  • Rühland, K. M., K. E. Hargan, A. Jeziorski, A. M. Paterson, W. Keller & J. P. Smol, 2014. A multi-trophic exploratory survey of recent environmental changes using lake sediments in the Hudson Bay Lowlands, Ontario, Canada. Arctic, Antarctic, and Alpine Research 46: 139–158.

    Article  Google Scholar 

  • Ruiz, Z., A. Brown & P. Langdon, 2006. The potential of chironomid (Insecta: Diptera) larvae in archaeological investigations of floodplain and lake settlements. Journal of Archaeological Science 33: 14–33.

    Article  Google Scholar 

  • Schmäh, A., 1993. Variation among fossil chironomid assemblages in surficial sediments of Bodensee-Untersee (SW-Germany): implications for paleolimnological interpretation. Journal of Paleolimnology 9: 99–108.

    Article  Google Scholar 

  • Schneider, D. W. & T. M. Frost, 1996. Habitat duration and community structure in temporary ponds. Journal of the North American Benthological Society 15: 64–86.

    Article  Google Scholar 

  • Schumm, S., W. D. Erskine & J. W. Tilleard, 1996. Morphology, hydrology, and evolution of the anastomosing Ovens and King Rivers, Victoria, Australia. Geological Society of America Bulletin 108: 1212–1224.

    Article  Google Scholar 

  • Shiel, R. J., J. D. Green & D. L. Nielsen, 1998. Floodplain Biodiversity: Why are There So Many Species? Rotifera VIII: A Comparative Approach. Springer, New York: 39–46.

    Book  Google Scholar 

  • Silver, C. A., S. M. Vamosi & S. E. Bayley, 2012. Temporary and permanent wetland macroinvertebrate communities: phylogenetic structure through time. Acta Oecologica 39: 1–10.

    Article  Google Scholar 

  • Spencer, M., L. Blaustein, S. Schwartz & J. Cohen, 1999. Species richness and the proportion of predatory animal species in temporary freshwater pools: relationships with habitat size and permanence. Ecology Letters 2: 157–166.

    Article  Google Scholar 

  • Thoms, M., R. Ogden & M. Reid, 1999. Establishing the condition of lowland floodplain rivers: a palaeo-ecological approach. Freshwater Biology 41: 407–423.

    Article  Google Scholar 

  • Tokeshi, M., 1995. Life cycles and population dynamics. In Armitage, P. D., P. S. Cranston & L. C. V. Pinder (eds), The Chironomidae. Springer, New York: 225–268.

    Chapter  Google Scholar 

  • Tronstad, L. M., B. P. Tronstad & A. C. Benke, 2007. Aerial colonization and growth: rapid invertebrate responses to temporary aquatic habitats in a river floodplain. Journal of the North American Benthological Society 26: 460–471.

    Article  Google Scholar 

  • Vivian-Smith, G., 1997. Microtopographic heterogeneity and floristic diversity in experimental wetland communities. Journal of Ecology 85: 71–82.

    Article  Google Scholar 

  • Walker, K., 1985. A Review of the Ecological Effects of River Regulation in Australia. Perspectives in Southern Hemisphere Limnology. Springer, Berlin: 111–129.

    Book  Google Scholar 

  • Walker, I. R. & L. C. Cwynar, 2006. Midges and palaeotemperature reconstruction – the North American experience. Quaternary Science Reviews 25: 1911–1925.

    Article  Google Scholar 

  • Walker, I. R. & R. W. Mathewes, 1987. Chironomids, lake trophic status, and climate. Quaternary Research 28: 431–437.

    Article  Google Scholar 

  • Waterkeyn, A., P. Grillas, B. Vanschoenwinkel & L. Brendonck, 2008. Invertebrate community patterns in Mediterranean temporary wetlands along hydroperiod and salinity gradients. Freshwater Biology 53: 1808–1822.

    Article  CAS  Google Scholar 

  • Welborn, G. A., D. K. Skelly & E. E. Werner, 1996. Mechanisms creating community structure across a freshwater habitat gradient. Annual Review of Ecology and Systematics 27: 337–363.

    Article  Google Scholar 

  • Wiederholm, T., 1983. Chironomidae of the Holarctic region. Keys and diagnoses. Part I. Larvae. Entomologica Scandinavica 19: 1–457.

    Google Scholar 

  • Wiggins, G. B., R. J. Mackay & I. M. Smith, 1980. Evolutionary and ecological strategies of animals in annual temporary pools. Archiv für Hydrobiologie supplement 58: 206.

    Google Scholar 

  • Williams, D. D., 2006. The Biology of Temporary Waters. Oxford University Press, Oxford.

    Google Scholar 

  • Woodward, C. A. & J. Shulmeister, 2006. New Zealand chironomids as proxies for human-induced and natural environmental change: transfer functions for temperature and lake production (chlorophyll a). Journal of Paleolimnology 36(4): 407–429.

    Article  Google Scholar 

  • Zar, J. H., 1996. Biostatistical Analysis, 3rd ed. Prentice Hall, Upper Saddle River.

    Google Scholar 

  • Zimmerman, B. & D. Simberloff, 1996. An historical interpretation of habitat use by frogs in a Central Amazonian forest. Journal of Biogeography 23: 27–46.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Wayne Robinson for his statistical advice, and Peter Cranston for his insight and knowledge of chironomids. This study was conducted in accordance with the National Parks Act 1975 and the Flora and Fauna Guarantee Act 1988, permit number 10006095.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dale Campbell.

Additional information

Handling editor: María del Mar Sánchez-Montoya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campbell, D., Humphries, P., McCasker, N. et al. Subfossil chironomid head capsules reveal assemblage differences in permanent and temporary wetlands of south-eastern Australia. Hydrobiologia 809, 91–110 (2018). https://doi.org/10.1007/s10750-017-3451-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3451-5

Keywords

Navigation