Skip to main content
Log in

Hydra nematocysts in the flatworm Microstomum lineare: in search for alterations preceding their disappearance from the new host

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Nematocysts are characteristic organelles of the phylum Cnidaria. The free-living Platyhelminth Microstomum lineare preys on Hydra oligactis and sequesters nematocysts. All nematocyst types become phagocytosed without adherent cytoplasm by intestinal cnidophagocytes. Desmoneme and isorhiza nematocysts disappear within 2 days after ingestion whereas cnidophagocytes containing the venom-loaded stenotele nematocysts migrate out of the intestinal epithelia through the parenchyma to the epidermis. Epidermally localized stenoteles are still able to discharge suggesting that this hydra organelle does preserve its physiological properties. Three to four weeks after ingestion, the majority of stenoteles disappear from M. lineare. To search for alterations of nematocysts that might precede their disappearance, flatworms were stained with acridine orange, a dye that binds to poly-γ-glutamic acid present in hydra nematocysts. The staining properties of all three nematocyst types were indistinguishable during the first 60 min after ingestion of hydra tissue whereas 15 h later, the majority of desmoneme and isorhiza had lost their stainability in striking contrast to stenoteles. In M. lineare inspected 2, 4 and 10 days after feeding, 20–40% of stenoteles had lost their stainability with acridine orange. Non-stained stenoteles had sizes similar to their stained counterparts but some of them were slightly deformed. The presented data indicate that acridine orange staining allows the detection of early alterations of all three ingested nematocyst types preceding their disappearance from M. lineare. Furthermore, they support the notion that the transport of venom-loaded stenoteles to the epidermis provides a strategy of excretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Beckmann A, Xiao S, Müller JP, Mercadante D, Nüchter T, Kröger N, Langhojer F, Petrich W, Holstein TW, Benoit M, Gräter F, Özbek S (2015) A fast recoiling silk-like elastomer facilitates nanosecond nematocyst discharge. BMC Biol 13:3. https://doi.org/10.1186/s12915-014-0113-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Berking S, Herrmann K (2006) Formation and discharge of nematocysts is controlled by a proton gradient across the cyst membrane. Helgol Mar Res 60:180–188. https://doi.org/10.1007/s10152-005-0019-y

    Article  Google Scholar 

  • Bode HR (1996) The interstital cell lineage of hydra: a stem cell system that arose early in evolution. J. Cell Sci 109:1155–1164

  • Carré C, Carré D (1980) Les cnidocystes du cténophore Euchlora rubra (Kölliker 1853). Cah Biol Mar 21:221–226

    Google Scholar 

  • Conklin EJ, Mariscal RN (1977) Feeding behavior, ceras structure, and nematocyst storage in the Aeolid nudibranch, Spurilla neapolitana (Mollusca). Bull Mar Sci 27:658–667

    Google Scholar 

  • Goodheart JA, Bely AE (2016) Sequestration of nematocysts by divergent cnidarian predators: mechanism, function, and evolution. Invertebrate Biol 136:75–91

    Article  Google Scholar 

  • Goodheart JA, Bleidißel S, Schillo D, Strong EE, Ayres DL, Preisfeld A, Collins AG, Cummings MP, Wägele H (2018) Comparative morphology and evolution of the cnidosac in Cladobranchia (Gastropoda: Heterobranchia: Nudibranchia). Front Zool DOI. https://doi.org/10.1186/s12983-018-0289-2

  • Greenwood PG (2009) Acquisition and use of nematocysts by cnidarian predators. Toxicon 54:1065–1070

    Article  CAS  Google Scholar 

  • Greenwood PG, Mariscal RN (1984) The utilization of cnidarian nematocysts by aeolid nudibranchs: nematocyst maintenance and release in Spurilla. Tissue & Cell 16:719–730

    Article  CAS  Google Scholar 

  • Grosvenor GH (1903) On the nematocysts of aeolids. Proc R Soc Lond 72:462–486

    Google Scholar 

  • Holstein T (1981) The morphogenesis of nematocytes in Hydra and Forskålia: an ultrastructural study. J Ultrastr Res 75:276–290

    Article  CAS  Google Scholar 

  • Holstein T, Tardent P (1984) An ultrahigh-speed analysis of exocytosis: nematocyst discharge. Science 223:830–833

    Article  CAS  Google Scholar 

  • Holstein TW, Benoit M, Gv H, Wanner G, David CN, Gaub HE (1994) Fibrous mini-collagens in hydra nematocysts. Science 265:402–404

    Article  CAS  Google Scholar 

  • Kälker H, Schmekel L (1976) Bau und Funktion des Cnidosacks der Aeolidoidea (Gastropoda Nudibranchia). Zoomorphologie 86:41–60

    Article  Google Scholar 

  • Karling TG (1966) On nematocysts and similar structures in turbellarians. Acta Zool Fenn 116:3–28

    Google Scholar 

  • Khalturin K, Anton-Erxleben F, Milde S, Plötz C, Wittlieb J, Hemmrich G, Bosch TCG (2007) Transgenic stem cells in hydra reveal an early evolutionary origin for key elements controlling self-renewal and differentiation. Devl Biol 309:32–44

    Article  CAS  Google Scholar 

  • Krohne G (2018) Organelle survival in a foreign organism: Hydra nematocysts in the flatworm Microstomum lineare. Eur J Cell Biol 97:289–299

    Article  CAS  Google Scholar 

  • Kurz EM, Holstein TW, Petri BM, Engel J, David CN (1991) Mini-collagens in hydra nematocytes. J Cell Bio 115:1159–1169

    Article  CAS  Google Scholar 

  • Martin CH (1908) The nematocyst of Turbellaria. Quart J Microsc Sci 52:261–277

    Google Scholar 

  • Mills CE, Miller RL (1984) Ingestion of a medusa (Aegina citrea) by the nematocyst-containing ctenophore Haeckelia rubra (formerly Euchlora rubra): phylogenetic implications. Mar Biol 78:215–221

    Article  Google Scholar 

  • Nüchter T, Benoit M, Engel U, Özbek S, Holstein TW (2006) Nanosecond-scale kinetics of nematocyst discharge. Curr Biol 16:R316–R318

    Article  Google Scholar 

  • Obermann D, Bickmeyer U, Wägele H (2012) Incorporated nematocysts in Aeolidiella stephanieae (Gastropoda, Opistobranchia, Aeolidoidea) mature by acidification shown by the pH sensitive fluorescing alkaloid Ageladine A. Toxicon 60:1108–1116

    Article  CAS  Google Scholar 

  • Östman C (2000) A guideline to nematocyst nomenclature and classification, and some notes on the systematic value of nematocysts. Sci Mar 64(Suppl. 1):31–46

    Article  Google Scholar 

  • Penney BK, LaPlante LH, Friedman JR, Torres MO (2010) A noninvasive method to remove kleptocnidae for testing their role in defense. J Molluscan Studies 76:296–298

    Article  Google Scholar 

  • Ruppert EE, Barnes RD (1994) Invertebrate zoology, sixth edn. Saunders, New York

  • Szczepanek S, Cikala M, David CN (2002) Poly-γ-glutamate synthesis during formation of the nematocyst capsules in Hydra. J Cell Sci 115:745–751

    CAS  PubMed  Google Scholar 

  • Tardent P, Holstein T (1982) Morphology and morphodynamics of the stenotele nematocyst of Hydra attenuata. Cell Tissue Res 224:269–290

    Article  CAS  Google Scholar 

  • Thompson TE, Bennett I (1969) Physalia nematocysts: utilized by mollusks for defense. Science 166:1532–1533

    Article  CAS  Google Scholar 

  • Thompson TE, Bennett I (1970) Observation on Australian Glaucidae (Mollusca: Opisthobranchia). Zool J Linnean Soc 49:187–197

    Article  Google Scholar 

  • Tursch A, Mercadante D, Tennigkeit J, Gräter F, Özbek S (2016) Minicollagen cysteine-rich domains encode distinct modes of polymerization to form stable nematocyst capsules. Sci Rep 6:25709. https://doi.org/10.1038/srep25709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Siebold CT (1848) Lehrbuch der vergleichenden Anatomie der wirbellosen Thiere. Veith & Comp, Berlin, pp 161–163

    Google Scholar 

  • Weber J (1990) Poly(γ-glutamic acid)s are the major constituents of nematocysts in Hydra (Hydrozoa, Cnidaria). J Biol Chem 265:9664–9669

    CAS  PubMed  Google Scholar 

  • Weber J (1995) Novel tools for the study of development, migration and turnover of nematocytes (cnidarian stinging cells). J Cell Sci 108:403–412

    CAS  PubMed  Google Scholar 

  • Werner B (1965) Die Nesselkapseln der Cnidaria, mit besonderer Berücksichtigung der Hydroida. I Klassifizierung und Bedeutung für die Systematik und Evolution Helgoländer wiss Meeresuntersuchungen 12:1–39

    Article  Google Scholar 

Download references

Acknowledgements

I am grateful to my former students Melanie Stiegler and Melanie Bunz who performed some preliminary experiments under my supervision. I am very grateful to Ulrich Scheer and Christian Stigloher for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Krohne.

Ethics declarations

Conflict of interest

The author declares that there are no conflicts of interest.

Ethical approval

All applicable national and institutional guidelines for the care and use of animals were followed.

Additional information

This article is dedicated to Werner W. Franke on the occasion of his 80th birthday.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krohne, G. Hydra nematocysts in the flatworm Microstomum lineare: in search for alterations preceding their disappearance from the new host. Cell Tissue Res 379, 63–71 (2020). https://doi.org/10.1007/s00441-019-03149-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-019-03149-w

Keywords

Navigation