Spontaneous magnetization in a superfluid vortex

Srimoyee Sen,

Iowa State University and Institute for Nuclear Theory, U of Washington

In collaboration with Aleksey Cherman, Theodore Jacobson, Laurence Yaffe Two of the most important phenomena in many body physics : superfluidity and superconductivity.

They are everywhere..

Heavy nuclei

Metallic superconductor

Neutron star

Credit: newatlas.com, U pf Amsterdam, wikipedia

Macroscopic wave function describing order.

Winding in phase of the wave function

Vortices

Credit: phys.org

Signature: quantized vortices, flux tubes

Why quantization ?

- 1. Wave functions are singlevalued.
- 2. Hence winding numbers have to be integers.
- 3. As a result superconductors contain quantized flux tubes and superfluids have quantized circulation.

Remember why metallic superconductors have magnetic flux tubes.

The system is neutral : ionic lattice + electrons.

Ions heavy.. Do not move.

The "almost-free" electrons pair up and form supercurrents around a vortex.

→ Magnetic field in the core of the vortex.

What's the deal with superfluids (BEC)?

Conventional wisdom : condensing particle is neutral.

no currents... no magnetic field.

Is this intuition correct?

Thinking carefully about BEC superfluids.

Difference between BEC and BCS

Thinking carefully about BEC superfluids.

Then coupling to gauge field possible though $F^{\mu\nu}$.

e.g. superfluid vortices have vorticity near the core : couple to magnetic field ?

In the language of Effective field theory

Can write operators involving F and the neutral field ψ .

In the language of Effective field theory

Neutral atom field Gauge field strength

$$L = \psi^* \left(\partial_t - \frac{\nabla^2}{2M} \right) \psi - \mu |\psi|^2 + \lambda |\psi|^4 + \frac{f^2}{4} + \dots$$

 ψ gets a vacuum expectation value \rightarrow superfluidity. Around a vortex $\psi \sim f(r)e^{i\theta}$.

Can I write a (vorticity). B coupling ?

What is a vorticity – B coupling ?

Looks like

When is a vorticity – B coupling allowed?

Effective field theory :

Effective field theory :

A (gauge field)

-A

Effective field theory :

No operator with linear power of the gauge field : no vorticity magnetic field coupling. A (gauge field)

-A

Effective field theory

In the absence of degeneracy, vorticity-magnetic field coupling is allowed. Assume far from degeneracy.

Neutral atom field

$$L = \psi^* \left(\partial_t - \frac{\nabla^2}{2M} \right) \psi - \mu |\psi|^2 + \lambda |\psi|^4 + \frac{F^2}{4}$$

 $b \sim O(1)$: to be obtained by a matching calculation.

What is λ ? It is set by the inverse Bohr radius of the atom.

What is α ? Using the relevant power counting $\alpha = 2$.

$$e \; \frac{a_0^2}{M} \big(\partial_i \psi^* \partial_j \psi - \partial_j \psi^* \partial_i \psi \big) F^{ij}$$

$$e \frac{a_0^2}{M} (\partial_i \psi^* \partial_j \psi - \partial_j \psi^* \partial_i \psi) F^{ij}$$

$$S_{ij} = \text{vorticity}$$
Integrate by parts to $\longrightarrow A^i \partial_j S^{ij}$
Current around vortex core

Another way to estimate the flux

The energy density in the magnetic field and vortex

$$\epsilon = B^2 + S.B$$

The magnetic field profile can be determined by equating

$$B^2 \sim B.S$$

$$\psi(r,\theta) = f(r)e^{i\theta} \longrightarrow \text{vorticity} = \frac{f(r)f'(r)}{r} \frac{e a_0^2}{M}$$

Compute the flux

$$\Phi \sim e \ \frac{a_0^2}{M} f_0^2 : f_0 = f(r \to \infty)$$
 $\begin{cases} f_0 & \text{is related to } \frac{density}{density} \\ \text{or interparticle spacing} \end{cases}$

$$\frac{\Phi}{\Phi_0} \sim \frac{e}{M a_0} \left(\frac{a_0}{l}\right)^3 \sim 10^{-10} \text{ for Helium}$$

$$l \text{ is interparticle}$$

$$\frac{l}{Spacing.}$$

Final message

Spin-0 superfluid vortices can carry magnetic fields in their core.

We believe this magnetic field is experimentally observable. See our forthcoming paper..

