
HAL Id: hal-03463491
https://hal.science/hal-03463491

Submitted on 2 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Forced force directed placement: a new algorithm for
large graph visualization

Zakaria Boulouard, Lahcen Koutti, Anass El Haddadi, Bernard Dousset

To cite this version:
Zakaria Boulouard, Lahcen Koutti, Anass El Haddadi, Bernard Dousset. Forced force directed place-
ment: a new algorithm for large graph visualization. International Review on Computers and Software
(IRECOS), 2017, 12 (2), pp.75-83. �10.15866/irecos.v12i2.12002�. �hal-03463491�

https://hal.science/hal-03463491
https://hal.archives-ouvertes.fr

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in: https://oatao.univ-toulouse.fr/22134

To cite this version:

Boulouard, Zakaria and Koutti, Lahcen and El Haddadi, Anass and
Dousset, Bernard Forced force directed placement: a new algorithm
for large graph visualization. (2017) International Review on
Computers and Software, 12 (2). 75-83. ISSN 1828-6003

Open Archive Toulouse Archive Ouverte

Official URL :
https://doi.org/10.15866/irecos.v12i2.12002

mailto:tech-oatao@listes-diff.inp-toulouse.fr
https://oatao.univ-toulouse.fr/22134
https://doi.org/10.15866/irecos.v12i2.12002

https://doi.org/10.15866/irecos.v12i2.12002

“Forced” Force Directed Placement: a New Algorithm

for Large Graph Visualization

Zakaria Boulouard
1
, Lahcen Koutti

1
, Anass El Haddadi

2
, Bernard Dousset

3

Abstract – Graph Visualization is a technique that helps users to easily comprehend connected

data (social networks, semantic networks, etc.) based on human perception. With the prevalence of

Big Data, these graphs tend to be too large to decipher by the user’s visual abilities alone. One of

the leading causes of this problem is when the nodes leave the visualization space. Many attempts

have been made to optimize large graph visualization, but they all have limitations. Among these

attempts, the most famous one is the Force Directed Placement Algorithm. This algorithm can

provide beautiful visualizations for small to medium graphs, but when it comes to larger graphs it

fails to keep some independent nodes or even subgraphs inside the visualization space. In this

paper, we present an algorithm that we have named "Forced Force Directed Placement". This

algorithm provides an enhancement of the classical Force Directed Placement algorithm by

proposing a stronger force function. The “FForce”, as we have named it, can bring related nodes

closer to each other before reaching an equilibrium position. This helped us gain more display

space and that gave us the possibility to visualize larger graphs.

Keywords: Big Data, Force Directed Placement, Graphs, Graph Visualization, Large Graphs

Nomenclature

FDP Force Directed Placement

FFDP “Forced” Force Directed Placement

T-FDP “Temporal” Force Directed Placement

I. Introduction

Graph visualization has imposed itself lately as a

blossoming research area. Indeed, it offers the possibility

to quickly grasp complex issues such as network

analysis, bioinformatics, or transport, based on human’s

visual prowess. In general, graphs display abstract data as

well as their patterns and connections and design them so

that they could make more sense or tell a story. For

example, let’s check out this social network {Zakaria –

Taha, Zakaria – Amine, Taha – Hamza, Zakaria – Anass,

Anass – Amine, Hamza – Zakaria}. We can understand

that Zakaria is a friend of Anass and Amine is also a

friend of Anass and so on. However, it is more

challenging to find a general pattern of the relationships

between all of these persons. On the other hand, the

graph in Figure 1 can help us quickly understand the

relationships between all of the individuals in the social

network in order to find out that the graph has two

clusters (groups of people) and that Zakaria is the person

that connects them.

According to Purchase et al. [1], an excellent graph

layout leads to a smooth cognition of the underlying

information while a bad layout makes the graph

confusing and obliges the reader to spend more time only

to understand a part of the information. This urged

Purchase to define some esthetic criteria to define a

“good” graph layout.

Fig. 1. Graph representing a social network

In order to respect these rules, several graph

representations (or layouts) were suggested. Hu and Shi

[2] have presented a survey of these graph layouts and

categorized them into six distinct models:

Spring-Electrical Model: In this model, further
detailed in Section 2, the links are presented as
springs while the nodes are displayed as steel rings.
The primary purpose of this model's algorithms is to
minimize the attractive-repulsive energy within the
nodes.

Stress Model: The main objective to achieve by
adopting this model is to reduce the energy of the
springs. For instance, Kamada and Kawai [3]
provided an algorithm that reduces the stress energy
within the edges by bringing the distance between the
nodes to the ideal length of their connecting spring.

Strain Model (or Classical MDS): This model tries to

find the best inner product between the nodes’

positions instead of the actual distance between them.

The final embedding should be centered on the origin,

and ideally the distance between the nodes is equal to

the ideal edge length.

MDS for Large Graphs: This model represents the
improvements to the Strain Model, either by
multiscaling it [4] or by approximating it [5]-[6].
Some algorithms suggest starting by drawing some
reference nodes (called landmarks [7] or pivots [8]).

High-Dimensional Embedding: This model provides
coordinates to the nodes in a k-dimensional space,
and then projects them into a regular 2D or 3D space
using principal component analysis [9].

Algorithms Based on the Spectral Information of the
Laplacian: This model takes the node positioning
problems and transforms them into problems of
defining positions with a minimum weighted sum of
the squared distances between the nodes [10]. This
will make the solution simply become the eigenvector
with the smallest positive eigenvalue of the weighted
Laplacian matrix.

Hu and Shi’s study [2] affirmed that, even if it was

more costly than the other models cited earlier, the

Spring Electrical Model gave a better graph visualization.

Dong et al. [11] confirmed it by stating that, thanks to

their ability to produce esthetically beautiful graphs,

Spring-Electrical based algorithms, such as Force

Directed Placement (FDP), are widely used. This has

compelled us to direct our research toward the Spring-

Electrical Model (Section 2) and to focus our work on

improving the performance of the FDP algorithm to open

more possibilities regarding large graph visualization

(Section 3).

The improvement that we propose in the present paper

is by replacing the function used in the classical Force-

Directed Placement with a stronger one. The new

function that we chose to call “FForce” will enable us to

refine the nodes final equilibrium positions while

bringing them closer to each other. As a result, we were

able to gain more visualization space to draw more nodes

and, therefore, visualize larger graphs.

Moreover, thanks to the dimension depending

repulsion term of our function, we were also able to keep

the disconnected smaller subgraphs close to each other

and to the larger ones, while in other algorithms, they

tended to push themselves further away and eventually

leave the visualization space (screen). Tests were run, in

Section 4, to observe the performances of the improved

algorithm, called "Forced Force Directed Placement"

(FFDP).

These tests are based on a comparison between FFDP,

the standard FDP algorithm, and two other algorithms.

The first one is used in the open source graph

visualization tool Gephi [12], while the other one is used

in a tool developed by previous members of our team,

VisuGraph [13]. Section 5 concludes the paper and

presents an idea of our future works.

II. Related Works

II.1. Spring-Electrical Model

To visualize graphs, Tutte [14] proposed to lay down

at first, some of the nodes, then the later ones on the

barycenters of their neighbors. The nodes’ positions are

easily determined by solving a system of linear functions.

However, the final disposition is not always the best.

Eades [15] has suggested a model called “Spring Layout”

where the nodes are given an initial positioning, and then

the edges (represented as springs) recall the nodes back

to an equilibrium position corresponding to a global

energy minimum. Fruchterman and Reingold later

improved this work by introducing an algorithm called

“Force Directed Placement” (FDP) [16]. In this

algorithm, the attractive force of the spring between two

connected nodes is proportional to the squared distance

between them. Thus, the attraction force is expressed as:

(1)

K is a parameter related to the nominal edge length of

the final layout.

On the other hand, the repulsive force between any

couple of nodes is inversely proportional to the distance

between them. It is expressed as:

(2)

The attraction force is applied amidst two adjacent

nodes while the repulsion force is administered by each

node on the rest of the nodes. Once the forces are

calculated, the node will shift toward the position where

the system attains a state of minimal energy. The

algorithm starts by calculating the attraction forces

between neighboring nodes; then, it calculates the

repulsion forces between each pair of nodes and, finally,

limits the total movement using a temperature criterion.

For a graph , every iteration requires a

computation cost of for calculating the attraction

forces and for calculating the repulsion forces

[17]. Fruchterman and Reingold later considered

reducing the complexity of this algorithm by introducing

a cell grid into which the drawing space will be split. The

objective here is to compute the local repulsive energy

between nodes in non-neighboring cells. The problem

with this approach is the fact that it may cause several

calculation errors. That is because it neglects the

repulsive forces that may exist between non-neighboring

nodes.

Tunkelang [18] and Quigley [19] were able to remedy

this problem by introducing quadtrees. A quadtree is a

grouping of nodes presentable as a "Super-Node" with a

repulsive force approximately equal to the total repulsive

force of the nodes it contains. If a group of nodes is far

enough from an individual node, it is safe to consider this

group of nodes as a super-node.

Other methods were proposed, such as the multilevel

approach, and a suitable metaheuristic was used in

solving several common issues, such as graph

partitioning [20], traveling salesman [21], and graph

drawing [22].

This method, as described by Hu and Shi [2], has three

steps: coarsening, coarsest graph layout, and refinement.

In the first step, a series of coarser and coarser graphs,

, is engendered. In this series, every

graph contains a small number of nodes and edges

along with information about its parent . The

coarsening stops when we reach a graph with the

smallest number of nodes. Therefore, the layout of the

coarsest graph becomes cheaper, and laying out the other

graphs is prolonged and refined recursively.

The algorithms cited earlier tend to fall into local

minima when the graphs to be drawn reach a certain size

level. In order to answer Big Data related visualization

requests, we need an algorithm that is able to draw large

and visible graphs.

II.2. Graph Visualization Tools

Several trials for algorithms have been launched in

order to have better large graph visualization. In this

paragraph, we will focus on the most important tools that

have adopted Spring-Electrical Model based algorithms.

A more detailed description will be dedicated to Gephi

[12] and VisuGraph [13], the tools utilizing the closest

algorithms to ours. Gephi is known for being one of the

most famous tools available on the market while

VisuGraph is a tool that was developed by former

members of our research team and the present work is an

amelioration of it. A comparison between the

visualization provided by our algorithm “FFDP” and the

algorithms adopted by Gephi and VisuGraph will be

demonstrated in Section 4.

1) OGDF: Developed by Chimani et al. [23], it is an

open source C++ library providing graph drawing

solutions among other possibilities. It is an algorithmic

layer to be used within other programs to be developed.

2) Cytoscape [24]: Licensed as an open source
software platform. Cytoscape was originally designed for

biological research purposes. It later became a general

platform for large graph analysis and visualization. It is

based on Java, but it also provides a JavaScript library

for web oriented development.

3) D3.js: Short for “Data Driven Documents for
JavaScript”, it is an open source JavaScript library that

allows amazing rendering charts out of diverse data

sources using HTML, SVG, and CSS. This library,

developed by Bostock et al. [25], is capable of some

seriously advanced visualizations with complex data sets

and allows for smooth interaction and sharing.

4) Gephi:, It is a free software program for graph
visualization and analysis developed by Jacomy et al.

[12]. This tool comes both as an executable and as

programming APIs, providing the most common graph

visualization algorithms.

The most important visualization algorithm provided

by Gephi is called “ForceAtlas2” (FA2). It is a Force-

Directed Placement algorithm developed by the Gephi

team. It presents the graph as a physical system where

nodes push each other away using a repulsive force while

links attract the connected nodes back using an attractive

force.

The basic expression of the Attractive Force (Fa)

according to this model is equal to the distance between

these nodes:

(3)

The Repulsive Force (Fr) between two nodes,

however, depends on the degrees of the nodes. It allows

centering the highly connected nodes while repelling the

less connected ones to the suburbs:

(4)

Kr is a coefficient to be fixed by the settings, and the

(+1), different from Noack’s expression [26], is a term

added so that we can ensure that even the nodes with a 0

degree can have a repulsive force.

Combining these two forces creates a movement that

converges to an equilibrium position.

This algorithm may provide a display that eases the

visual interpretation of the data structure under study.

However, it doesn’t take the nodes attributes into

consideration during the positioning process. This can be

a problem if the coordinates were to be used in the

analysis.

5) VisuGraph: Developed within our team at IRIT

[13]. Its approach regarding large graph visualization is

particularly interesting with its two principal features:

Graph Visualization.

Time Dependent Evolutionary Aspect..

a) Graph Visualization: Loubier has proposed a

minor modification of the FDP by setting the

attraction and repulsion forces as:

The attraction force:

(5)

 “β” is a constant coefficient.

“ ” is the distance between two nodes and .

“ ” is a coefficient used to alter the attraction

between the two nodes by either increasing or

decreasing it.
“ ” is a coefficient computed according to the
dimensions of the drawing space:

(6)

“ ” is the length of the drawing space, and “ ” is
its width.

The repulsion force:

(7)

“ ” is a constant coefficient.

“ ”is a coefficient used to alter the repulsion

between the nodes and by either increasing or

decreasing it.

b) Evolutionary aspect using Time Slices: Loubier

[13] has noted that when the analysis is time

dependent, a graph can send mixed signals.

Therefore, she adopted a time based graph

presentation where each “Time Slice” represents a

particular period.

Taking the temporal dimension into account in

the graph visualization goes in two steps:

First, a global time independent graph is
drawn.

Second, virtual nodes representing the time

slices are scattered in the drawing space,

while the graph nodes are positioned close to

the virtual nodes representing their

correspondent time slice.

III. Forced Force-Directed Placement

The proposed solution is an alteration of the standard

FDP. This algorithm is called “Forced Force Directed

Placement” (FFDP).

The algorithm itself is similar to the standard FDP but

with stronger attraction and repulsion forces. These

forces, combined to form one function called “FForce”,

are applied to the node positions in order to find

equilibrium positions where the nodes are brought closer

to each other compared with the positions generated by

the standard FDP. This approach provides more drawing

space and thereby the ability to draw more nodes.

III.1. Attraction

This function represents the attraction force applied on

the links represented as coil springs.

It was first expressed as:

(8)

 is the Euclidian distance between two nodes.

 is the gap between the current position and the

equilibrium position.

such as is the equilibrium length of the

spring. It allows adapting the graph drawing to the

screen’s size. It depends on the screen’s size as well as

on the graph’s density.

It is important to mention that represents the links'

hardness. This makes it an essential factor for good graph

visibility by having a direct relationship with the number

of links. In other words, the more the number of the links

increases, the more the graph will have a tendency to

compact. Therefore, we need to release it.

Example: Imagine we have a graph with 4 nodes that

are all connected. We will eventually have 6 links and a

full graph matrix.

In this case, in order to have a clear visualization, we

need to release the nodes, thereby increasing the value of

. Moreover, our also needs to depend on the number

of the graph’s links.

Let us now improve our example and suppose that our

links do not have the same weight. It is very common to

have links weighed 1, and others weighed 10 or even

100.

In this case, the difference between the links’ weights

will certainly influence the positioning of the connected

nodes and consequently the graph’s visualization. To

remedy this situation, our also needs to depend on the

links’ weights.

To sum up, the greater the number of the links is and

the stronger they are, the more the graph tends to

compact and to bring itself to the screen’s center.

Therefore, what we need is a coefficient that is able to

remedy these excesses of number and weights of links.

An expression of the value of was proposed, such

as:

(9)

with being the number of the links and their

average weight.

The square root will avoid an overflow of the value of

 when the number of links increases.

The chart in Figure 2 shows the evolution of

according to the number of links.

Fig. 2. The evolution of α according to the number of links

The cube term stands for the spring’s

elasticity. In the same hardness, the spring becomes loose

when its length reaches ; then, it becomes harder in

further values. In other words, the more we pull on the

spring, the harder it comes back.

The chart in Figure 3 shows the evolution of the cube

term according to the spring’s length.

The chart in Figure 3 has a null derivative at one

point, in the vicinity of our spring’s equilibrium length,

in this case, . This would have been entirely

correct if we had a perfectly soft spring, which is not the

case since we have a coil spring.

The solution would be to add a linear term to our

attraction function. This term will allow the attraction

function to continue to act even if the spring’s length

approximates the equilibrium length.

Thus, the expression of the attraction function

becomes:

(10)

Fig. 3. The evolution of the cube term according to

the spring’s length

The chart in Figure 4 describes the evolution of the

proposed expression of the attraction function according

to the spring’s length.

Fig. 4. The evolution of the proposed expression of the attraction

function according to the spring’s length

In Figure 4, we can see in the chart that we have, on

the extremities, a stronger influence of the cube term of

the function (in red). This term acts as a restoring

function that brings the nodes back when the spring

reaches a certain length. Whereas on the vicinity of the

spring’s equilibrium length, the linear term (in blue)

prevents the nodes from colliding.

The overall evolution of the attraction force (in green),

therefore, demonstrates more acceptable behavior.

However, mathematically speaking, it is still incorrect.

The problem comes from the cube term that is

symmetrical and could also, eventually, reach the value 0

or even exceed it. For lengths approximating 0, the

spring would eventually break.

What we need is a term that would look similar to the

cube term and yet have a vertical asymptote that would

prevent our spring from breaking and making it act like a

real coil spring that touches, stretches, and then stops

pulling at a certain point.

A proposed expression to answer these specifications

is the following:

(11)

The chart in Figure 5 models the evolution of the

corrected expression of the attraction function according

to the spring’s length.

Fig. 5. The evolution of the corrected expression of the attraction

function according to the spring’s length

This chart displays a much more correct evolution of

the attraction function, so that the expression to adopt is

the one described in the equation (11).

III.2. Repulsion

It represents the repulsion force exercised by each

node on all of the others forcing them and, subsequently,

to repel each other.

It is a negative force that depends on a limit distance

beyond which it becomes null. This means that at a

certain point when the distance between two nodes

becomes significant enough, the repulsion force becomes

so small that it would be useless to calculate it.

Therefore, we can assume that the repulsion force is

inversely proportionate to the distance and should not

exceed a limit distance beyond which the repulsion force

is considered null. The threshold distance chosen is equal

to half the screen so that the nodes that have already

reached the monitor's border would not be able to repel

each other and would remain on the screen.

The repulsion force is expressed by the function:

(12)

However, there is something to pay attention to. This

term is only correct in a 2D space.

If our graph were represented in a 3D or 4D space, the

expressions of the repulsion force would become

respectively, « » and « ». Why?

The reason is simple; let’s take two nodes A and B.

If we double the distance between these nodes, the

repulsion force exerted by the node A to the node B, for

example, would reduce to half if the nodes were in a 2D

space, whereas in 3D, it would shrink to the third, then to

the eighth in 4D.

This is essentially due to the force field that spreads

throughout the space as the distance increases. In 2D, the

force field spreads throughout a surface while in 3D, is

spreads throughout a cone and in 4D, throughout a cube.

Thus, the repulsion function would be correct

becoming:

(13)

with being the number the dimensions of the space

within which our graph is represented.

The chart in Figure 6 models the evolution of the

repulsion force according to the distance in 2D (in blue),

3D (in red), then 4D (in green).

Fig. 6. The evolution of the repulsion force according to the distance

III.3. FForce Function

By combining the attractive and repulsive forces

described earlier, we propose a function that represents

the overall forces applied by each node of our graph on

the other. We chose to call this function “FForce”.

It is expressed as follows:

(14)

or in other terms:

(15)

« » is the FForce applied between the nodes « »

and « ».

« » is the Euclidian distance between the nodes « »

and « ».

« » is the spring’s rest length.

« », and « » are coefficients that were given the

following values:

,

The term « » expresses the repulsive force.

The terms « » and

« » represent the linear and

non-linear effects of the attraction on the edge,

respectively.

III.4. FFDP Algorithm

Applying the “FForce” on a graph’s nodes will be

done using an algorithm we named “Forced Force

Directed Placement” or (FFDP). This algorithm, as

outlined in the pseudo-code (Algorithm 1), is inspired

from the FDP algorithm as described in the pseudo-code

by Hu and Shi [2].

The « » term expresses the node’s displacement

increment. The objective of the FFDP algorithm is to

find better equilibrium positions for the graph’s nodes

while gaining more space on the screen. It is important to

mention that applying the FFDP algorithm gave us a

rendering that is close to the FDP but with better control

over the smaller subgraphs that tend to leave the screen

in the standard FDP and, therefore, we could keep

valuable information from being lost.

Algorithm 1 FForce Algorithm(G, x, tol, K)

input: graph, initial positions , tolerance , and

nominal edge length K

set

repeat

For() {

// f is a 2-D or 3-D vector

// Equation (15)

}

until ()

The algorithm’s complexity is O(n4). It is true that it

will be time-consuming when the numbers of nodes and

links get higher, but this problem is easily overcome

since the algorithm is supposed to run in a parallelized

environment.

The results of running the FDP coupled with FForce

will be described in the following section.

IV. Testing and Results

To test the visualizations produced by FFDP, we put it

in comparison with the standard FDP, then with the T-

FDP used in VisuGraph [13] and ForceAtlas2 used in

Gephi [12]. The first testing sample is a simple graph

containing two nodes with a 1-D coordinate each:

and , connected with one edge. Figure 7 displays

the evolution of the nodes’ positions during the

application of three algorithms (Standard FDP, FFDP,

and ForceAtlas2).

Figure 7 made it clear that the FFDP, compared to the

two other algorithms, could bring the nodes closer to

each other before settling into an equilibrium position.

This will help us gain more display space for larger

graphs.

Fig. 7. Evolution of Nodes Coordinates after applying FDP, FFDP,

and ForceAtlas2

The second testing sample is composed of 3 graphs

with different sizes: the first graph, called “Small World”

describes a small network gathering 20 persons

represented as nodes connected with 40 links. The

second graph, called “Facebook Ego 0” represents a

Facebook network connecting 333 individuals

represented by nodes with a total of 2,519 friendship

relations represented by the links. The third graph, called

“Marvel Superheroes”, connects all the characters from

the comic books by Marvel. They are represented with

104,690 nodes and 178,115 links.

Those graphs can be found among Gephi’s test dataset

that is available in the following link:

https://github.com/medialab/benchmarkForceAtlas2/bl
ob/master/dataset.zip (last checked 3/17/2017).

The objective of this test is to display the ability of the

FFDP to draw large graphs in a 2D space. The

visualizations produced by FFDP are compared with

those generated by the other two previously mentioned

algorithms (Standard FDP and ForceAtlas2). Another

algorithm, called “Temporal” Force Directed Placement

(T-FDP), was also introduced to this test. It is the

algorithm developed by our team in IRIT and

implemented in the tool VisuGraph [13].

All these algorithms were implemented in Java and

were tested in a computer with a standard configuration

(Intel i3 processor and 4Gb RAM).

The next Tables I, II, and III show the results of the

comparison that we proposed.

In the “Small World” graph, the best node positioning

was provided by FFDP, closely seconded by

ForceAtlas2. On the other hand, the visualizations

provided by both the standard FDP and T-FDP were way

too far from the expected result.

In the “Facebook Ego 0” graph, the displays provided

by the standard FDP and T-FDP were practically similar.

ForceAtlas2 was able to assemble the nodes in two

groupings, but, on the other hand, it lost the smaller

subgraphs that were not connected to the main one.

FFDP was able to bring out a third less pronounced

grouping in the main subgraph while keeping the three

independent subgraphs close to the main one.

TABLE I

THE RESULTS OF RUNNING VARIOUS LAYOUT ALGORITHMS ON THE

GRAPH “SMALL WORLD” (20 NODES, 40 LINKS)

FFDP ForceAtlas2

T-FDP Standard FDP

TABLE II

THE RESULTS OF RUNNING VARIOUS LAYOUT ALGORITHMS ON THE

GRAPH “FACEBOOK EGO 0” (333 NODES, 2519 LINKS)

FFDP ForceAtlas2

T-FDP Standard FDP

https://github.com/medialab/benchmarkForceAtlas2/blob/master/dataset.zip
https://github.com/medialab/benchmarkForceAtlas2/blob/master/dataset.zip

TABLE III

THE RESULTS OF RUNNING VARIOUS LAYOUT ALGORITHMS ON THE

GRAPH “MARVEL SUPERHEROES” (104690 NODES, 178115 LINKS)

FFDP ForceAtlas2

T-FDP Standard FDP

In the “Marvel Superheroes” graph, the standard FDP

and T-FDP can barely be seen with a few nodes popping

out of the cloud, but it is not enough to have a proper

view of the graph. ForceAtlas2 was able to highlight two

groupings of nodes and, yet again, lost the independent

subgraphs. FFDP, on the other hand, managed to

highlight more groupings while keeping the separate

subgraphs in the screen.

It is important to mention that even though FFDP was

able to draw larger graphs by bringing nodes closer to

each other and gaining more space, this particular point

can affect the quality of the drawing after a certain

threshold. Indeed, in the “Marvel Superheroes” graph, it

was nice to have the smaller subgraphs visible and close

to the larger one. However, the nodes could have been

less close to each other than how they actually were. This

can be achieved by adding a limitation term to the

attraction force.

V. Conclusion

This paper presented the “Forced Force Directed

Placement” (FFDP) algorithm, as an improvement to the

classical Force Directed Placement algorithm. FFDP

allowed us to refine the nodes final positions and provide

better equilibrium positions while bringing the nodes

closer to each other. We were able to gain more

visualization space to draw more nodes and provide

larger graphs as a result. Moreover, thanks to the

dimension depending repulsion term, were also able to

keep the disconnected smaller subgraphs close to each

other as well as to the larger ones, while in other

algorithms they tend to push themselves further away

and eventually leave the visualization space (screen).

FFDP’s rendering results were compared to those of the

standard FDP algorithm along with two other versions,

wherein the first one is used in the open source graph

visualization tool Gephi [12], while the other one is used

in a tool developed by previous members of our team,

VisuGraph [13].

The FFDP algorithm will be integrated into

XEWGraph [26], the large graph visualization service of

the Competitive Intelligence tool Xplor EveryWhere

[27]. The out of the box clustering and categorization

provided by XEWGraph’s hypergraph approach will give

us two advantages. The first one is to be able to draw

lighter, web destined graphs with a general view and then

have a deeper view of more specific details according to

the decision maker’s needs. The second advantage is the

ability to display these graphs on smaller screens such as

smartphones.

FFDP’s dimension depending repulsion term will

open up the possibility to draw graphs on 3D or 4D

spaces while guaranteeing a better convergence of the

algorithm. This urges us to propose an expansion to the

XEWGraph tool that will provide such visualizations.

References

[1] H. C. Purchase, Performance of Layout Algorithms:

Comprehension, not Computation, (1998) Journal of Visual

Languages and Computing, Elsevier, pp. 647-657.

[2] Y. Hu, L. Shi,. Visualizing large graphs, (2015) Wiley

Interdisciplinary Reviews Computational Statistics, Wiley

Periodicals Inc., pp. 115-136.

[3] T. Kamada, S. Kawai, An algorithm for drawing general

undirected graphs, (1989) Information Processing Letters,

Elsevier, pp. 7-15.

[4] R. Hadani, D. Harel, A multi-scale algorithm for drawing graphs

nicely. (2001) Discrete Applied Mathematics, Elsevier, pp. 3-21.

[5] E.R. Gansner, Y. Hu, SC. North, A maxent-stress model for graph

layout, (2013) Comput Graph, Transactions on, IEEE, pp. 927-

940.

[6] M. Khoury, Y. Hu, S. Krishnan, CE. Scheidegger,. Drawing large

graphs by low-rank stress majorization. (2012) Comput Graph

Forum.

[7] V. De Silva, J. B. Tenenbaum, J. B., Global versus local methods

in nonlinear dimensionality reduction, (2003) Neural Information

Processing Systems, Advances in., MIT Press, pp. 721-728.

[8] Brandes, U., Pich, C., Eigensolver methods for progressive

multidimensional scaling for large data, Proceedings of the 14th

International Springer Symposium on Graph Drawing (Page: 285,

Year of publication: 2007).

[9] D. Harel, Y. Koren, High-Dimensional Embedding, (2004)

Journal of Graph Algorithms and Applications, Brown

University, pp. 195-214.

[10] K. M. Hall, An r-dimensional quadratic placement algorithm,

(1970) Management Science, Informs Journal on Computing, pp.

219-229.

[11] W. Dong, F. Wang, Y. Huang, G. Xu, Z. Guo, X. Fu, K. Fu, An

advanced pre-positioning method for force-directed graph

visualization based on PageRank algorithm, (2015) Computers &

Graphics, vol. 47, p 24-33.

[12] M. Jacomy, , T. Venturini, , S. Heymann, M. Bastian,

ForceAtlas2, a Continuous Graph Layout Algorithm for Handy

Network Visualization Designed for the Gephi Software, (2014)

PLoS ONE, vol. 9.

[13] E. Loubier, Analyse et visualisation de données relationnelles par

morphing de graphe prenant en compte la dimension temporelle,

PhD Thesis, IRIT, Paul Sabatier University, Toulouse, France,

2009.

[14] Tutte, W.T., How to draw a graph, Proceedings of the London

Mathematical Society (Page 743, Year of Publication 1963).

[15] P. Eades, A heuristic for graph drawing, (1984) Congressus

Numerantium 42, pp. 149-160.

[16] T. M. J. Fruchterman, E.M. Reingold, Graph drawing by force-

directed placement, (1991) Software Practice and Experience,

John Wiley & Sons Ltd, pp. 1129-1164.

[17] SG. Kobourov, Force-directed drawing algorithms, Handbook of

graph drawing and visualization, (United States: CRC Press,

2013, 388–389).

[18] D. Tunkelang, , A numerical optimization approach to general

graph drawing, Ph.D. Thesis, Carnegie Mellon University,

Pennsylvania, United States, 1999.

[19] A. Quigley, Large scale relational information visualization,

clustering, and abstraction, Ph.D. Thesis, Department of

Computer Science and Software Engineering, University of

Newcastle, Australia, 2001.

[20] Gupta, A., Karypis, G., and Kumar, V., Highly scalable parallel

algorithms for sparse matrix factorization, IEEE Transactions on

Parallel and Distributed Systems (Page 502, Year of Publication

1997).

[21] C. Walshaw, A multilevel approach to the traveling salesman

problem, (2002) Operations Research, vol. 50, pp. 862–877.

[22] C. Walshaw, A multilevel algorithm for force-directed graph

drawing, (2003) Journal of Graph Algorithms and Applications,

vol. 7, pp. 253–285.

[23] M. Chimani, C. Gutwenger, M. Jünger, G. W. Klau, K. Klein, P.

Mutzel, The Open Graph Drawing Framework (OGDF),

Handbook of Graph Drawing and Visualization, (United States:

CRC Press, 2014, Chapter 17).

[24] http://www.cytoscape.org (last visited 3/17/2017).

[25] Bostock, M., Ogievetsky, V., Heer, J., D3: Data-Driven

Documents, Proceedings of the IEEE InfoVis Conference (Year of

Publication: 2011).

[26] Noack, A., 2004. An energy model for visual graph clustering.

Proceedings of the 11th International Springer Symposium on

Graph Drawing (Page 425, Year of Publication: 2003).

[27] Boulouard, Z., Koutti, L., El Haddadi, An., El Haddadi, Am.,

Fennan, A., XEWGraph: A Tool for Visualization and Analysis of

Hypergraphs for a Competitive Intelligence System, Proceedings

of the 6th IEEE International Conference on Information Systems

and Economic Intelligence (SIIE), (Page 66, Year of Publication:

2015).

[28] A. El Haddadi, Fouille Multidimensionnelle sur les Données

Textuelles Visant à Extraire les Réseaux Sociaux et Sémantiques

pour leur Exploitation via la Téléphonie Mobile, PhD Thesis,

IRIT, Paul Sabatier University, Toulouse, France, 2011.

Authors’ information
1LabSIV, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco.

E-mails: zboulouard@gmail.com,

zakaria.boulouard@edu.uiz.ac.ma

lkoutti@yahoo.fr

2Department of Mathematics and IT, ENSA, Mohamed 1st University,

Al Hoceima, Morocco.

E-mail: anass.elhaddadi@gmail.com

3SIG, IRIT, Paul Sabatier University, Toulouse, France.

E-mail: dousset.bernard@gmail.com

Zakaria Boulouard was born in 1988; he

received his engineer’s degree in software

engineering in 2013. He is currently a PhD

student at the Faculty of Sciences, Ibn Zohr

University, Agadir, Morocco. His research

interests include Big Data Visualization and

Analytics, Data Science, Business Intelligence,

and Competitive Intelligence.

Lahcen Koutti is currently a Professor at

Department of Computer Science at the Faculty

of Science, Ibn Zohr University, Agadir,

Morocco. He received his PhD degree in

Computational Physics in 1999 from University

Paul Verlaine, France and the Habilitation

degree in 2010, from Ibn Zohr University,

Morocco. His research interests include

Artificial Intelligence and Computer Vision. He is a member of the

Computer Systems and Vision Laboratory.

Anass El Haddadi is a doctor of business

intelligence from the University of Toulouse

(France) and University Mohammed V of Rabat

(Morocco) (2011). He is an associate professor

in ENSA of Al-Hoceima. He is a member of the

French Research Group in Competitive

Intelligence. Since 2014, he is a co-president of

Competitive Intelligence Day in Morocco; since

2015, he is the president of VSST Association Chapter Morocco; and

since 2016, he is the vice president of ISKO-Maghreb (Morocco). His

research interests include decision-support information systems, big

data analytics, data visualization, and unstructured data management.

Bernard Dousset is an Emeritus Professor in

the IRIT research laboratory in the University of

Toulouse (France). He is the honorary president

of the International Conference on Scientific

and Technological Strategic Intelligence. He is

a member of the French Research Group in

Competitive Intelligence. He is the honorary

president of VSST Association. His research

interests include Applied Mathematics, Optimization, Statistics, Data

Mining, Text Mining, Strategic Monitoring, and Competitive

Intelligence.

http://www.cytoscape.org/
mailto:zboulouard@gmail.com
mailto:zakaria.boulouard@edu.uiz.ac.ma
mailto:lkoutti@yahoo.fr
mailto:anass.elhaddadi@gmail.com
mailto:dousset.bernard@gmail.com

