N
N

N

HAL

open science

GDT4MAS: a formal model and language to specify and
verify agent-based complex systems

Bruno Mermet, Gaéle Simon

» To cite this version:

Bruno Mermet, Gaéle Simon. GDT4MAS: a formal model and language to specify and verify agent-

based complex systems. Studia Informatica Universalis, 2012, 10, pp.5-32. hal-00956412

HAL Id: hal-00956412
https://hal.science/hal-00956412
Submitted on 7 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00956412
https://hal.archives-ouvertes.fr

GDT4MAS: a formal model and language to
specify and verify agent-based complex
systems

B. Mermet “, G. Simon *

* Laboratoire GREY C, UMR 6072 & Université du Havre
Campus Cote de Nacre
Boulevard du Maréchal Juin
BP 5186 - 14032 CAEN cedex
Bruno.Mermet@univ-lehavre.fr
Gaele.Simon@univ-lehavre.fr

Abstract. In this article, we briefly present the GDT4MAS model, a formal specification model
dedicated to Multi-Agent Systems. We especially explain why we concieved a dedicated model
and method, and how we associated to this method a few essential characteristics. We also
try to explain why this model is particularly suited to complex systems. We also present the
proof process provided by the model. We illustrate on a toy example the proof process of the
GDT4MAS model and we show how an automatic verification can be performed thanks to a
theorem prover like PVS.

Keywords: complex systems, multiagent systems, verification, GDT4MAS, PVS

1. Introduction

For several years, Multi-Agent Systems (MAS) have been more and
more widely used either to solve artificial intelligence problems or to
model complex systems. However, their usage is mainly restricted to
academic research, essentially because the way they work is hard to un-
derstand (especially when modelling complex systems) and, as a con-

sequence, they do not provide enough guarantees on their result. This
is for instance discussed in [OFT04].

There are several ways to bring more confidence in MAS, such as
semi-formal models (like AUML) or monitoring systems. We have cho-
sen to focus our research on the formal specification and verification of
MAS. In this research area, several strategies may be attempted:

— formalizing a standard MAS model;
— adapting a standard formal verification system to MAS;

— developing a dedicated formal MAS model with an associated ver-
ification system.

The first approach is not tractable because standard MAS models
forget many concepts that are necessary when a formal verification is
required. The second approach seems more feasible, because a few
verification systems are supported by industrial CASE-tools (like the
B-method[Abr96], supported by the Atelier B) and some of them are
adapted to distributed systems (like the notion of system in the B-
method). However, a MAS is not only a distributed systems: agents
do not always work alltogether in a cooperative way to solve a shared
problem. Indeed, an agent lives in an environment where other entities
(agents or artefacts) evolve according to their own goals.

This statement leads us to develop a new formal model and verifi-
cation system, dedicated to MAS. However, we want to re-use experi-
enced principles, from either the MAS community or the formal verifi-
cation domain. As a consequence, we must develop a model with the
following underlying concepts:

— an agent’s behaviour is specified by goals;

—an agent is proactive and cannot assume a given behaviour from
other agents;

— formal verification is a so complicated task that it must be per-
formed automatically as much as possible;

— first-order logic, arithmetic and set-theory are very expressive tools
to specify programme behaviours. Moreover, there are several auto-
matic provers adapted to these formalisms. Linear Temporal Logic in-
crease the expressivity of the predicate logic;

GDT4MAS 3

— most important properties to guarantee the correctness of a system
are invariant properties and liveness properties;

—a compositionnal proof system is the only way to obtain formulae
simple enough to be automatically proven;

—the earlier a proof is attempted, the easier it is and the less expen-
sive the correction is;

—an automatic code generation from the proven specification to an
implementation language is necessary to preserve the guarantee pro-
vided by the proof.

As a consequence, specifying and verifying a MAS using our model
relies on the following steps:

1) a specification is written in our language;

2) using Proof Schemas (PS) that we provide with the model, the
specification is automatically translated into a set of predicates, called
Proof Obligations (PO), that must be proven to guarantee the correct-
ness of the specification;

3) the set of PO is automatically proven with a proof verification
system, such as PVS [SRI], krt [CS] or SPIN [Holcm)].

Please notice also that once step 1 is performed, the code can be
automatically produced, regardless of the proof process.

The GDT4MAS model is well suited to specify complex systems
based on MAS for the following reasons:

— specifying numerous agents is easy to perform, as agents are pa-
rameterized instances of agent types. As a consequence, most proofs
can be performed directly at the “agent-type” level, and not agent by
agent;

—although proofs can be performed by model-checking, they are
theorem-prover oriented, reducing the consequences of the number of
agents on the complexity of the proof;

— proofs can be performed on agent types specified independently.
For instance, a problem of two robots having to clean the Mars planet

(and initially specified in [BFVWO03]) has been extended to several
robots of each type, and has been proven to be correct thanks to our

method [MS09]. The number of proofs to perform depends only on the
number of agent types. This seems suitable to complex systems, where
the number of entities may be very huge, but the number of entity types
is often quite smaller.

In a more recente article, we have extended our model to specify
holonic agents [MS10, MS11]. We recall here that holonic agents
are agents that can be grouped into organisations that can be seen as
agents [Occ00, ASMOS]. This kind of modelization is particularily well
suited to model multi-scale problems, a usual situation in complex sys-
tems. However, to make the presentation of our model clearer, this
extension of our model will not be presented in this paper.

In this paper, we begin by describing the GDT4MAS model, that
is more widely presented in [MS09, MSSZ07]. Indeed, the goal of this
article is not to present the model (it has been already done), but to show
the proof mechanism, helping in understanding why it can be used on
complex systems. Then, in section 3, we summarize the proof system.
This is examplified on a case study presented in section 4. The case
study we have chosen may surprise, as it is made of a single agent with a
very simple behaviour. However, it has been selected because it allows
to detail the proof steps, that are indeed very easy, but produce long
formulae.

2. The GDT4MAS model
2.1. Main concepts

In the GDT4MAS model, the MAS is described by an environment,
mainly described by variables, and a population of agents evolving in
this environment. Each agent is described as an instance of an agent
type. As a consequence, in the rest of this section, after a short de-
scription of the notations we used, we begin by describing the notion of
agent type, and of agent behaviour.

GDT4MAS 5

2.2. Notation

Notation 2.1 (primed and unprimed variable) When the value of a
variable v in two execution states is considered, the value of v in the
first state, called the current state, is written v, and its value in the sec-
ond state is written v'. For instance, the action consisting in increasing
the value of v by 1 is specified by the postcondition v' = v + 1.

2.3. Agent Type Specification

Simplified Definition 2.1 (Agent Type) An agent type t is described
by a name (name,), a set of internal variables (V arl,), a set of surface
variables (VarS;), an invariant (i), and a behabiour (b;).

In this definition, an internal variable is a variable that only the owner
agent can see and modify (compare it to a private attribute in the object
model); a surface variable is a variable that only the owner agent can
modify, but that can be seen by the other agents (compare it to a private
attribute with a public getter method); an invariant is a predicate defined
on the internal and surface variables of the agent type and that must
always be true for every agent of the given type; and the behaviour of
an agent is specified by a Goal Decomposition Tree, defined later in this
section.

Simplified Definition 2.2 (Action) An action a is specified by a name
(name,), a precondition (pre,), a postcondition (post,), an ns flag
(ns,) and a gpf (gpf.). The precondition is a predicate specifying when
the action is enabled, the postcondition specifies what that action does
(x' = x — 1 for instance expresses that the action decreases the value
of © by 1), the ns flag has the value NS (necessarily Satifiable) if the
action is guaranteed to always succeed, and NNS if the action may fail,
and the gpf, the Guaranted Property in case of Failure, is a predicate
specifying what is however guaranteed to be true if the action fails.

Definition 2.1 (Goal Decomposition Tree (GDT)) A Goal Decompo-
sition Tree describes the behaviour of the agents of a given type. Each

node of this tree is a GDT goal. The tree structure is defined thanks to
the decomposition of each GDT goal into subgoals.

Definition 2.2 (GDT goal) 4 GDT goal g is described by a name
(name,), a satisfaction condition (sc,), a gpf (gp[f,). a decomposition,
an ns flag (ns,) and a laziness flag (1,). The satisfaction condition is a
predicate specifying what the goal must establish, the gpf'is a predicate
specifying what is guaranted to be established if the execution of the
goal fails, the ns flag specifies whether the goal always succeed or not,
and the laziness flag specifies whether the goal decomposition is exe-
cuted when the satisfaction condition of the goal is already true when
the goal is considered.

Definition 2.3 (Goal decomposition) A GDT goal is either a leaf goal
or an intermediate goal. In the latter case, the goal is decomposed into
one or several subgoals, thanks to a decomposition operator. A list of
decomposition operators can be found in [MSSZ07].

Among others, we can informally introduce the following decompo-
sition operators:

—SeqOr: Sequential Or. It decomposes the parent goal into several
subgoals N;. Subgoals are considered from the the left to the right. If
the considered subgoal succeeds, the parent goal is achieved and the
execution of the decomposition is ended. But if it fails, the next subgoal
is considered. If the last subgoal is reached and fails, the satisfaction
condition of the parent goal must be evaluated to know if it is achieved
or not.

—SeqAnd: Sequential And. It decomposes the parent goal into sev-
eral subgoals /V;. Subgoals are considered from the left to the right. If
the considered subgoal succeeds, the next one is considered. If the last
subgoal is considered and succeeds, the parent goal is achieved. But if
it fails, the satisfaction condition of the parent goal must be evaluated
to determine whether the parent goal is achieved or not.

— SyncSeqOr and SyncSeqAnd: These operators are similar to the
SeqOr and SeqAnd operator, but environment variables can be locked
during the whole execution of the parent goal decomposition.

GDT4MAS 7

2.4. Properties proven by the method

The GDT4MAS method allows to prove several kinds of proper-
ties. We first prove invariant and liveness properties, at the agent-type
level and at the system-level. We recall here that invariant properties
are properties that must be always true, and that liveness properties are
properties that must eventually be true. Moreover, the proof-system of
the method verifies that goal decompositions are valid. In this article,
we focus on the proof of decompositions and of invariant properties.
This is the topic of the next section.

3. Proving a GDT4MAS Model

In this section, we do not deal with the verification of the MAS; we
only briefly describe how the correctness of an agent type is established.
In order to make proofs compositional, context propagation rules and
gpf propagation rules are associated to each decomposition operator.
Moreover, a Proof Schema is associated to each operator. It generates
proof obligations whose verification proves the correctness of the de-
composition. We recall here such rules and schemas. For more details
on the MAS proof or on the other proof schemas, the reader may refer
to [MSSZ07, MS09].

In proof schemas, we use several predicat transformers that are pre-
sented in the next paragraph.

3.1. Predicate transformers

Notation 3.1 (At) Let [a predicate. fli] is a predicate where each
non-subscripted variable in f is subscripted by 1.

Example: (x = yo)[1] = (1 = o).

Notation 3.2 (Between) Let f a predicate. {177 is a predicate derived
from f where each unprimed and unsubscripted variable is subscripted
by 1 and each primed variable becomes unprimed and subscripted by j.

1—2 —

Example: (v < x ANa' =x0)"7% = (Y2 < 21 ATy = 29).

Notation 3.3 (Temporal switch) Let f a predicate. [~ is predicate
derived from [where each subscript is increased by i.

*)725(

Example: (x = x1 AN ys = x1) T=T_1NYop=T_1).

Notation 3.4 (Priming) Let [a predicate. If f contains at least one
primed variable, then pr(f) = f. Otherwise, pr(f) is the predicate
derived from [where each unsubscripted variable is primed.

Examples: pr((x = x0)) = (2/ = xo) and pr((z = 2')) = (v = 2').

Notation 3.5 (Stability) Let ¢ and agent type with two internal vari-
ables via,vib and one surface variable vs (internal and surface vari-
ables are described in the next section). Then, when one agent a of
this type is considered stab'™7 is the predicate via; = via; A vib; =
vib; Avs; = vs;.

Notation 3.6 (Untemporalization) Let f a predicate. f* is the for-
mula f in which all subscripts of value x are removed.

Example: (1 = x9)*¥ = 2 = 5.

Notation 3.7 (Invariant) Let A an agent situated in an environment .
We write:
— 14 the invariant associated to the internal variables of the agent;
— ig the invariant associated to the environment variables,

—ig A the conjunction of 14 and i¢.

3.2. Context inference

In order to make proof obligations compositionnal, each proof
schema has a context as hypothesis. This context can be calculated au-
tomatically in a top-down manner thanks to context inference rules.

A context is associated to a goal in a GDT. This is a first-order for-
mula that is guaranted to be true when the goal is considered. In a
context formula, it may be necessary to refer to the value of a variable

GDT4MAS 9

in a previous state. In that case, the variable is subscripted by a nega-
tive integer. The value in the current state is represented by the variable
name neither subscripted nor primed. For instance, consider the GDT
presented in figure 1, and suppose the context of the root goal is z = y.

] \\)
"\ X=y _ / Y,

SegAnd

Figure 1: Simple GDT

The different states to consider are the following, as shown on fig-
ure 2.
= ay=y Y=yl ax=x

Figure 2: Simple GDT

In the state in which the right subgoal is considered (with a bold
outline in figure 2), we know that:

—in state —2, from the parent goal, x and y are equals; So: ©_y =
Y2,

—between states —2 and —1, the value of x is increased, whereare
the value of y is preserved, and so: x_ ;1 =2 o+ 1Ay 1 = y_o;

10

—between state —1 and the state in which the right subgoal is con-
sidered, if x and y are internal variables (and thus, cannot be modified
by other agents), we have: t =z_1 Ay = y_;.

So, the context of the right subgoal is:
cdr=(ro=y)Nx_1 =20+ 1 ANy 1=y o)ANT=2_1 ANy =1y_1)

Please notice that this allows to deduce that in the state in which the
right subgoal is considered, we have z = y + 1.

For instance, the context propagation schema for the SyncSeqAnd
operator, when the parent goal is NL, is the following:

Cn, =Cn
-2\ %
Cn;i>1) = <<(CN«;71 A SCNFI)O%1 A stab 7% A ieall] A igA[Q]))

And the context propagation schema for the SyncSeqOr operator
when the parent goal is lazy is:

N
Cn, = ((CN[O] A stabOHl)% 1)
0—1 e) -2\ °
Cn,(i>1) = <<CN«;71 A gpri—l) A stab Niga[l] A ZgA[Q])

3.3. GPF inference

As explained above, each NNS goal is specified by a Goal Prop-
erty in case of Failure. However, we have to prove that this property is
verified when the goal decomposition fails. Thus, for each decomposi-
tion, we also have to infer a GPF from the decomposition, and we must
establish that this inferred property implies the given GPF.

3.4. Proof schemas

A proof schema is associated to each decomposition operator. For
instance, here is the proof schema associated to the SyncSeqOr operator

GDT4MAS 11

requires to prove both following formulae (where the value of [is 1 if
the parent goal is lazy and 0 otherwise):

i=k
/\ ((Cwi [0] A pr(sen,)’ ™t A icall]) — pr(scw)(%(i*l)*l)Hl))
i=1

Informally, it specifies that when a subgoal is executed in its context
(which specifies that the eventual preceeding subgoal has failed) and
succeeds, the parent goal is established.

Moreover, a proof schema is also associated to each NNS goal to
establish that the given GPF is implied by the inferred GPF:

infgpf y — 9pf N 2)

Finally a proof schema is also associated to each action node. It must
establish that

— the precondition of the action is implied by the context of the node;

— the postcondition of the action implies the satisfaction condition of
the node.

This proof schema is so the following (if « is the action associated to
node N and T'Yg 4 represents the typing of the agent and environment
variables):

{ Cn — prea

Cn[0] A pr(posta)’™ ATYea[l] = pr(scn)’™ Aiga[l])

4. Application

4.1. Introduction

The main goal of this section is to illustrate the differents aspects of
the model. So, a very simple but complete example of a GDT agent
is detailed. The context of this example is the following: a robot R
must turn on the light in several rooms, each room being identified by a

12

number. The behaviour specified by the GDT given here describes how
the robot can proceed for a given room, numbered n. This GDT can be
seen as a part of the whole GDT, managing the iteration on the set of
rooms. Each room has at least one door with an electric eye which can
turn on the light, and a traditional switch. As a consequence, the robot
has two possibilities: coming into the room by the right door or using
the switch. Moreover, it is supposed that the electric eye can be out of
order, or does not always work as expected. These two contexts prevent
the electric eye from turning on the light in the room. The given GDT
does not explicitely specify how the robot reaches the considered room.
We only consider the part of the behaviour where the robot is ready to
enter into the required room. It is only supposed that the robot is able
to move from a room to another and always stops inside a room. If the
moving part of the behaviour has to be proven, the GDT we give here
would be embedded into a bigger one.

4.2. Specification

First of all, here are the different constants, variables and types to be
used in this context:
— Types
- the set of rooms numbers NUM : NUM C N;
— Environment variables
- the set of room states S and the state of each door: (S €
INUM — {true, false}]) A (door € [NUM — {true, false}]). The
previous formula defining S and door is called TYg. If S(n) = true

with n € NUM, it means that the room number n is lighted, and if
room(n) is true, it means that the door of room 7 is opened.

— Internal variables (that is to say, variables managed by the robot)
- the variable in Room indicates the room in which the robot is :
(inRoom € NUM). The previous formula is called 7Yx.

- the variable n indicates the room the Robot must lighten : n €
NUM.

GDT4MAS 13

The invariants associated to the environment(/z) and to the robot(/y)
are equals to true.

Three clauses are associated to a GDT which are now defined for the
GDT of the R robot:

— the triggering context T'C' which defines the conditions to be veri-
fied in order the GDT to be executed by the agent. Here, T'C' = true;

—the precondition precGDT which defines additional conditions
which must be verified when the triggering context is true for the GDT
to be executed by the agent. Here, precGDT = true;

— the initialisation clause which defines how the different variables
must be initialised at the begining of the GDT execution. Here the vari-
able in Room can be initialised with any value of NU M (ie. the number
of the room where the robot is at the begining of the behaviour). The
variables S and door are initialised according to the state of the differ-
ent rooms considered. Please notice that our proof system specifies that
the initialisation clause must logically imply Iz, which is always true
here whatever the initialisation clause is.

Figure 3 shows the GDT of the robot agent. The main goal (Light-
edRoom - LR) consists in ligthening the chosen room. This goal is de-
composed into two subgoals, thanks to the SyncSeqOr operator. This
specifies that, in order to lighten room 7, the robot may first use the
cellular eye (goal UsingCellularEye, UCE) by entering into the room.
However, as explained above, this goal may fail. In that case, the robot
will use the switch (goal UsingSwitch, US), a goal that always suc-
ceeds. The goal UCE is itself decomposed into two subgoals, thanks to
the SyncSeqAnd operator: the first subgoal consists in opening the door,
and the second one consists in entering into the room and switching the
light on thanks to the cellular eye.

Please notice that the SyncSeqOr operator used in the GDT allows to
lock variables during the execution of the parent goal. Here, we guaran-
tee that the state of the considered room is not modified by another agent
during this part of the robot’s behaviour. We give now more details on
the five goals of this GDT.

— Goal LightedRoom (LR)

14

’i{iLightedRoom/f‘/}

ﬁ ncSequ

UsingCellularEye. ~switch | UsingSwitch
SyncSegAnd soort
" Opening D <wmm Entering
_opening | hedoor ~~ entering = intothe
rroom

Figure 3: The GDT of the case study

- This goal is necessarily satisfiable (NS) which means that when
the agent executes its GDT, it always achieves this goal.

- This goal is lazy which means that when the robot tries to exe-
cute the GDT, if the room to be lighted is already lighted, the goal is not
executed.

- The satisfaction condition is: SCp = (S(n) = true)

— Goal UsingCellularEye (UCE)

- this goal is decomposed into two subgoals thanks to the SynSe-
qAnd operator

- This goal is not necessarily satisfiable (NNS) which means that
the robot does not always achieve to turn on the light when trying to use
the cellular eye (see the beginning of this section)

- This goal is not lazy (NL) which means that the robot always
tries to execute this goal.

- The satisfaction condition is the following : SCycp = (5'(n) =
true A\ inRoom’ = n An’ = n). It means that if the goal is achieved
then the chosen room is lighted and the robot is in the room.

- The GPF of this goal is the following: —S’(n) A inRoom' =
n A n' = n: the robot is still in the considered room (which remains
unchanged) but the light of this room is off.

GDT4MAS 15

— Goal UsingSwitch (US)

- This goal is an elementary one which means that an action (de-
scribed in the following) is associated to it.

- This goal is necessarily satisfiable (NS) which means that the
robot always achieves to turn on the light using the switch.

- This goal is not lazy (NL).

- The satisfaction condition is the following : SCys = (S(n) =
false — S'(n) = true) A n’ = n. It means that if the goal is achieved
then if the room was not lighted, it becomes lighted.

- The action associated to this goal is the switch action. Its pre-
condition is PRF ., = (inRoom = n) (the action can be executed
only if the robot is inside the room, its postcondition is POSTi1en =
(S'(n) = =S(n) An' = n) (this means that using a switch con-
sists in changing the state of the light in the room - whatever the
state of the switch is) and its guaranteed property in case of failure is
GPFys = GPF,uiien = false (it is the default GPF when an action
always succeeds).

— Goal Opening the door (OD)

- This goal is an elementary one;

- This goal is an NS goal, which means that the robot always suc-
ceed in opening the door;

- This goal is non-lazy;

- The satisfaction condition of this goal is SCop = (door'(n) A
n' = n): after the goal execution, the door is opened,

- The action associated to this goal is the opening action. Its
precondition is PRFEy,cning = (true)) and its postcondition is
POST pening = (door'(n) An' =n)

— Goal Entering into the room (ER)

- This goal is an elementary one;

- This goal is an NNS goal. Indeed, wherease the robot always
succeed in entering into the room, the whole action does not always
succeed because it does not always turn the light on;

- This goal is non-lazy;

16

- The satisfaction condition of this goal is SCrr = (inRoom’ =
nAn =nAS(n));

- The guaranted property in case of failure of this goal is
GPFgr = (inRoom’ =nAn’ =n A =5 (n));

- the action associated to this goal is the enfering action. Its
precondition is PRE,,ering = door(n) (to enter in a room, its door
must be opened), its postcondition is POST, tering = (inRoom' =
nAn=mn'AS"(n))andits gpfis GPFepicring = (inRoom’ =nAn =
n' A =5'(n)).

4.3. Proof obligations

In the sequel, we generate predicates that must be proven to guaran-
tee the correctness of the specification. Please notice that these pred-
icates, called Proof Obligations, are calculated using Proof Schemas
described above.

4.3.1. Context inference

Using context propagation rules established by the GDT model, we
obtain the following context for the five nodes of our GDT:

Crr =5 € {NUM — B} ANdoor € {NUM — B} AinRoom € NUM An € NUM

S_1 € {NUM — B} Adoor_, € {NUM — B}
inRoom_1 € NUM An_1 € NUM
c _J noi=nAimRoom_1 =inRoom AN S_1(n_1) = S(n_1)
UCE = §e{NUM — B} Adoor € {NUM — B}
inRoom € NUM An € NUM
=S-1(n-1)

Cgr =

GDT4MAS 17

S_3 € {NUM — B} Adoor_3 € {NUM — B}
inRoom_3 € NUM ANn_3 € NUM

n_g =n_z AinRoom_3 = inRoom_2 A S_3(n_3) = S_2(n_3)
S_2 € {NUM — B} Adoor_3 € {NUM — B}
inRoom_o2 € NUM An_2 € NUM

~S-3(n-3)

—S_1(n—2) ANinRoom_1 =n_2 An_1 =n_s

inRoom = inRoom_1 A S(n-1) = S_1(n—1) An=n_1
S_1 € {NUM — B} Adoor_, € {NUM — B}
inRoom_1 € NUM An_, € NUM

S € {NUM — B} Adoor € {NUM — B}

inRoom € NUM ANn € NUM

S_1 € {NUM — B} Adoor_, € {NUM — B}
inRoom_1 € NUM An_1 € NUM
Coppy = J M1 =1 inRoom_1 = inRoom N S_1(n-1) = S(n-1)
°P =Y Se{NUM — B} Adoor € {NUM — B}
inRoom € NUM An € NUM
—S5-1(n-1)

S_3 € {NUM — B} Adoor_3 € {NUM — B}

inRoom_3 € NUM ANn_3 € NUM

n_g =n_2 AinRoom_3 = inRoom_2 N S_3(n_3) = S_2(n_3)
S_2 € {NUM — B} Adoor_3 € {NUM — B}

inRoom_o2 € NUM ANn_> € NUM

—8-3(n-3)

door_1(n_2) Amn_1 =n_

inRoom_1 = inRoom An_1 = n A door_i(n_1) = door(n)
door—1 € NUM - BAS_1 € NUM — B

inRoom_1 € NUM ANn_1 € NUM

door e NUM - BASe NUM — B

inRoom € NUM ANn € NUM

18

4.3.2. gpfinference
Using the gpf inference rule of the method, we have:

S_5 € {NUM — B} Adoor_5 € {NUM — B}
inRoom_5 € NUM ANn_s € NUM

n_s =n AinRoom_5 = inRoom A S_s5(n_s5) = S(n_s)
S € {NUM — B} ANdoor € {NUM — B}

inRoom € NUM An € NUM

—=S-5(n—s)

door_s(n)An_z=mn

inRoom_3 = inRoom_2 An_3 =n_z A door_3(n_3) = door_z(n_z)
. door—3 € NUM — BAS_3€ NUM — B

infopfuen = inRoom_3 € NUM An_3 € NUM

door—o € NUM — BAS_2€ NUM — B

inRoom_o2 € NUM ANn_> € NUM

(inRoom_1 =n_2 An_gs =n_1 A-S_1(n_2))
(inRoom’ = inRoom_1 An' =n_1)

door—1 € NUM — BAS_1 € NUM — B

inRoom_1 € NUM ANn_1 € NUM

door’ € NUM - BAS € NUM — B

inRoom’ € NUM An' € NUM

4.3.3. Proofs
4.3.3.1. SyncSeqOr decomposition

From proof schema (1), we have two formulae to check.
The first formula is equivalent to:

S_1€ {NUM — B} Adoor_, € {NUM — B}

inRoom_1 € NUM ANn_1 € NUM

n_1 =no A inRoom_1 = inRoomo A S—1(n-1) = So(n-1)
So € {NUM — B} Adooro € {NUM — B}

inRoomo € NUM ANng € NUM

=S5-1(n-1)

S1(no) A inRoomy = no Ani1 = no

S1 € {NUM — B} ANdoor1 € {NUM — B}

inRoom1 € NUM ANny € NUM

N
S1(n1)

GDT4MAS 19

And the second one is equivalent to:

S_3 € {NUM — B} Adoor_3 € {NUM — B}

inRoom_3 € NUM ANn_3 € NUM

n—g =n_2 AinRoom_3 = inRoom_2 N S_3(n—3) = S_2(n_3)
S_2 € {NUM — B} Adoor_> € {NUM — B}

inRoom_o2 € NUM ANn_> € NUM

—S_3(n-s)

—S_1(n—2) NinRoom_1 =n_2 An_1 =n_s

inRoomo = inRoom_1 A\ So(n—1) = S—1(n-1) Ano =n_1
S_1 € {NUM — B} Adoor_, € {NUM — B}

inRoom_1 € NUM ANn_1 € NUM

So € {NUM — B} Adooro € {NUM — B}

inRoomo € NUM Nnog € NUM

=So(no) — S1(no)

ni =no

S1 € {NUM — B} Adoor1 € {NUM — B}

inRoom1 € NUM ANny € NUM

N
S1 (nl)

Please notice that we also have a proof obligation generated by
the SyncSeqAnd operator decomposing the goal UCE, but we do not
present it here. Notice also that this decomposition does not impact the
proof obligations associated to the SyncSeqOr operator.

4.3.3.2. Elementary goal US

The first proof obligation generated by the proof schema associated
to elementary goals consists in verifying that the precondition of the
switch action is true when this action has to be executed :

S_3 € {NUM — B} Adoor_s € {NUM — B}
inRoom_3 € NUM ANn_3 € NUM

n—g =n_2 AinRoom_3 = inRoom_2 N S_3(n—3) = S_2(n_3)
S_2 € {NUM — B} Adoor_> € {NUM — B}
inRoom_o2 € NUM ANn_> € NUM

—5-3(n-3)

—S_1(n—2) NinRoom_1 =n_2 An_1 =n_s

inRoom = inRoom_1 A S(n-1) = S_1(n—1) An=n_1
S_1 € {NUM — B} Adoor_, € {NUM — B}
inRoom_1 € NUM ANn_1 € NUM

S e€{NUM — B} Adoor € {NUM — B}

inRoom € NUM An € NUM

—
inRoom =n

20

The second proof obligation consists in verifying that SCy g is satis-
fied when the action has been executed with success and that the invari-
ant is preserved:

S_3 € {NUM — B} Adoor_s € {NUM — B}

inRoom_3 € NUM ANn_3 € NUM

n—g =n_2 AinRoom_3 = inRoom_2 N S_3(n—3) = S_2(n_3)
S_2 € {NUM — B} Adoor_> € {NUM — B}

inRoom_o2 € NUM ANn_> € NUM

—S-3(n—3)

—S_1(n—2) NinRoom_1 =n_2 An_1 =n_s

inRoomo = inRoom_1 A\ So(n—1) = S—1(n-1) Ano =n_1
S_1 € {NUM — B} Adoor_, € {NUM — B}

inRoom_1 € NUM ANn_1 € NUM

So € {NUM — B} Adooro € {NUM — B}

inRoomo € NUM Nnog € NUM

S1(no) = ~So(no) Amn1 = no

S1 € {NUM — B} Adoor1 € {NUM — B}

inRoom1 € NUM ANny € NUM

%
((=So(no) — S1(no)) An1 =no Atrue)

4.3.3.3. Other proof obligations

Six other proof obligations are engendered by the method but not
detailed here. Here is a list of them:

— The decomposition of the UCE goal with the SyncSeqAnd operator
1s valid: 1 PO;

— The actions associated to elementary goals Opening the door and
entering into the room are correct: 4 PO;

— The gpf associated to the UCE goal is correct: 1 PO.

5. Proof with PVS
5.1. Specification

The case study presented in the previous section has been proven
with PVS [SRI]. PVS is a verification system that integrates a power-
ful theorem prover and a model checker (that has not been used here).

GDT4MAS 21

Proofs are performed on specifications based on an expressive language
that augments classical higher-order logic with, especially, a type sys-
tem.

Figures 4 to 6 show the specification obtained for the case study.
It is very close to the set of proof obligations generated by our proof
system (which is, indeed, one of the aims of this system). Each proof
obligation is specified as a named theorem, that is to say a formula that
has to be proven by PVS. Let notice that trivial proof obligations (proof
obligations in which we have to prove ¢rue) have not been added to the
PVS specification.

The first part of the specification is dedicated to types, variables or
constants declarations. When an identifier is declared as a variable (with
the VAR keyword), it implies that the identifier will be universally quan-
tified in each formula of the theory. This explains that no explicit uni-
versal quantification appears in theorems. Moreover, these declarations
are automatically added as typing hypotheses in theorems to be proved.

So, the number of rooms max is declared as a constant (with no
explicit associated value) and other identifiers are declared as vari-
ables. A parametrized type roomSet is used to specify the set of ex-
isting room numbers in the following declarations. As a consequence,
roomSet(mazx) corresponds to the set NU M in the previous specifica-
tion.

22

lumieresEtendu: THEORY
BEGIN

max: nat

roomSet(l: nat): TYPE = {n: nat | n < [}

np, n, n5, n3, n2, nl, ng, ny: VAR roomSet(max)

Sp, S, S5,53,82,S1, Sy, Si: VAR [roomSet(max) — bool]

doorp, door, doorl, door0, door I, door 2, door 3, door 5: VAR
[roomSet(max) — bool]

inRoomp, inRoom, inRoom 5, inRoom 3, inRoom 2, inRoom I, inRoom0, inRooml: VAR
roomSet(max)

POl: THEOREM
(- S 3(n3) &
(S.3(n.3) = S 2(n 3) &
(inRoom_3 = inRoom 2) &
m3=n2 &
(door_1(n 2)) &
1l =n2&
(inRoom0 = inRoom 1) &
(ng =nl) &
(door_1(n_1) = door0(ng)) & (inRooml = ng) & (n1 = ng) & (S1(ng))
= S1(n_2) & (inRooml = n 2) & (n; = n_2)

PO2: THEOREM
(- S 1n1) &
(S_I(n_1) = So(n_1) &
(inRoom_1 = inRoom0) & (n_ 1 = ng) & Si(ng) & (inRooml = ng) & (n; = ng)
= Si(n1)

PO3: THEOREM
(= S 3(n3) &
(S 3(n3) = S2mn3) &
(inRoom_3 = inRoom 2) &
m3=n2 &
(= S 1(n.2) &
(inRoom_1 = n 2) &
1l =n2&
(inRoom0 = inRoom_1) &
(Som_1) = S I 1) &
(mng = n_1) & (= So(ng)) = Si1(ng)) & (n1 = ng)
= Si1(n1)

Figure 4: PVS specification of the case study (1)

GDT4MAS

23

PO4: THEOREM
(= S.5(n.5) &
(S.5(n.5) = S(n5) &
(inRoom_5 = inRoom) &
ns5=mn)&
door 3(n) &
m3 =n) &
(inRoom_3 = inRoom 2) &
m3=n2 &
(inRoom_1I = n 2) &
M2 =n1l) & (= S 1(n_2)) & (inRoomp = inRoom 1) & (np = n_1)
=
((Sp(n) & (inRoomp = n) & (np = n)) V
((= Sp(n)) & (inRoomp = n) & (np = n)))

PO5: THEOREM
(= S_1(n_1)) &
(S_I(n_1) = So(n_1) &
(inRoom_1 = inRoom0) & (n_1 = ng) & doorl(ng) & (n1 = ng)
= (doorl(ng) & (n1 = ng))

PO6: THEOREM
(= S 3(n3) &
(S 3(n3) = S2mn3) &
(inRoom_3 = inRoom 2) &
m3=n2 &
door_1(n 2) &
1l =n2&
(inRoom_1 = inRoom) & (n_1 = n) & (door I(n_1) = door(n))
= door(n)

Figure 5: PVS specification of the case study (2)

24

PO7: THEOREM
(- S 3(n3) &
(S.3(n.3) = S 2(n 3) &
(inRoom_3 = inRoom 2) &
m3=n2 &
door_1(n 2) &
1l =n2&
(inRoom_1 = inRoom0) &
n_ 1 = ng) &
(door_1(n_1) = door0(ng)) & (inRooml = ng) & (ng = n1) & Si(ng)
= (inRooml = ng) & (n1 = ng) & Si(ng)

PO8: THEOREM
(= S 3(n3) &
(S 3(n3) = S2mn3) &
(inRoom_3 = inRoom 2) &
m3=n2 &
(= S 1(n.2) &
(inRoom_1 = n 2) &
(n_1 = n 2) & (inRoom = inRoom_1) & (S(n_1) = S I(n_1)) & (n = n_1)
= (inRoom = n)

PO9: THEOREM
(= S 3(n3) &
(S 3(n3) = S2mn3) &
(inRoom_3 = inRoom 2) &
m3=n2 &
(= S 1(n.2) &
(inRoom_1 = n 2) &
1l =n2&
(inRoom0 = inRoom_1) &
(Som_1) = S I 1) &
(mo = n_1) & (S1(ng) = (= Sop(no)) & (n1 = ng)
= (= So(ng)) = Si(no)) & (n1 = ng))

END lumieresEtendu

Figure 6: PVS specification of the case study (3)

GDT4MAS 25

5.2. Proof

Each theorem of the PVS specification has been automatically
proven by the PVS prover using the default strategy called grind. The
proof is based on sequent calculus. The default strategy integrates dif-
ferent techniques such as definition expansion and arithmetic, equality
or quantifier reasoning. We only give here the details of the proof of one
PO (PO9). What is important to notice is that the proof is performed
completely automatically.

The trace of the proof of PO9 is given in figure 7 through 10. The
first step is obtained after a skolemization process. The second step is
reached after a simplification process to flatten the sequent. In step 3,
equalities between variables are used to unify terms. And finally, in
step 4, the last sequent is simplified, making the proof feasible.

Verbose proof for P09.
P09:

{-1} inRoom0’ < max
{-2} inRoom’ < max
{-3} inRoom’’ < max
{-4} inRoom’”’” < max
{-5} n{ < max
{-6} n} < max
{-7} n' < max
{-8} n’’ < max
{-9} n’"’ < max
{1} (= S &
(S///(n///) — S//(n///)) &
(inRoom’”” = inRoom””) &
(n/// — n//) &
(= S'(n") &
(inRoom’ = n'’) &
(n/ — n//) &
(inRoom0’ = inRoom’) &
(Sh(n') = S'(n') &
(nh = n') & (S1mh) = (= Shmp) & (nf = np)

= (- SH(nh) = S{(my) & (nf = np))

Figure 7: PVS proof, step 1 (skolemization)

26

P09:
{-1} inRoom0’ < max
{-2} inRoom’ < max
{-3} inRoom’’ < max
{-4} inRoom’”’ < max
{-5} ng < max
{-6} ni < max
<
{-9} n'"’ 7§ max
{-10} (S///(n///) _ S//(n///))
{-11} (inRoom’”” = inRoom’”)
{-12} " = n'")
{-13} (inRoom’ = n'’)
{-14} (@' =n')
{-15} (inRoom0’ = inRoom’)
{-16} (Sp(n”) = ')
{-17} (n9 =n'
{18y (S1(ng) = (= Shnp))
{-19} /}/ :/H
{1} S (n)
{2} S/(n//
B3} (= Shp) = Si(ng) & (nf = n{)
Figure 8: PVS proof, step 2 (flattening)
P09:
{-1} n'’ < max
{-2} n’’ < max
{-3} inRoom’’ < max
{-4} inRoom”” < max
{-5} n'/ < max
{-6} n'’ < max
_ "
W
{-9} n'/ g max
{-10} (FaLSE = S''(n'"))
{-11} (inRoom””” = inRoom’”)
{-12} (n/// _ n//)
{-13} (inRoom’ = n'’)
{-14} (' =n"
{-15} (inRoom0’ = n'’)
{16} Sy’ = S'(n")
i Eg%n:”)n R
{-19} (n] =n"
{1} S///(n//)
{2t s'e)
{3} (= Sp(n’") = (= SH(n"")))

Figure 9: PVS proof, step 3 (replacement)

GDT4MAS

27

P09:

{-3} inRoom’’ < max
{-4} inRoom’’ < max

<
{-7} n'’ < max
{-8} n’/ < max
{-9} n'’ < max
{-10} (raLsE = S/ (n"))
- InRoom = mRoom
11 inR " inR« 1"

{-12} (n/// — n//)
{-13} (inRoom’ = n'’)
{-14} (n' =n')

{-15} (inRoom0’ = n'’)
{16} (Sp(n) = S’
=n

(”9
{-18} (S}(n”) = Sp(n’"))
=n")

{2y s’

B3} (= SHm”") = (= Shn"))
Simplifying, rewriting, and recording with decision procedures,
This completes the proof of P09.

QED.

Figure 10: PVS proof, step 4 (simplification)

28

6. Conclusion

Presenting the whole GDT4MAS model and its application is, of
course, not possible in such a presentation. For instance, communica-
tions have not been considered (but more can be found on this subject
in [MS10, MS11]. However, we hope we managed to illustrate a few
important characteristics of the model, among others:

— its compositional aspect;

— its expressiveness, also other capabilities using holons are not pre-
sented here (but can be found in [MS10]);

— its capability to be automated;

— its adequation to any theorem prover, thanks to proof schemas gen-
erating proof obligations in first order logic.

— the success of automatic proofs.

The case study we used in this article, is of course, a very simple exam-
ple, with only one agent. We chose it however to present in details how
proof obligations are produced, and how they are proven to be correct.
But of course, the model has also been illustrated with several agents
of several types. The essential specificity of this model making it more
adequate than others to complex systems is that it uses theorem prov-
ing for system of several agents. Most other agent verification systems
are either limited to one agent (like goal [dBHvdHMOO0] for instance)
or use model checking, making the verification of system with a greate
number of agents impossible, as it is presented in other works trying to
use model-checking on complex systems [TMBDLKO04, Bon10]. More-
over, the compositional aspect of the system, and the fact that proofs are
associtated to agent types rather than to agents, makes the complexity
of the proof process linear in the number of agent types.

References

[Abro6]
[ASMO8]

[BFVWO03]

[Bon10]

[CS]

[dBHvdHMO00]

[Holcm]

[MS09]

[MS10]

[MS11]

[MSSZ07]

GDT4MAS 29

J.-R. Abrial. The B-Book. Cambridge Univ. Press, 1996.

E. Adam, E. Grislin-Le Strugeon, and R. Mandiau.
Flexible hierarchical organisation of role based agents.
In 2nd IEEE Int. Conf. on Self-Adaptive and Self-
Organizing Systems Workshops, pages 186—191, 2008.

R.H. Bordini, M. Fisher, W. Visser, and
M. Wooldridge. Verifiable multi-agent programs.
In M. Dastani, J. Dix, and A. Seghrouchni, editors,
ProMAS, 2003.

F. Bonnefoi. Vérification formelle des spécifications
de systemes complexes par réseaux de Pétri : applica-
tion aux systemes de transport intelligents. PhD thesis,
Université Pierre et Marie Curie, 2010.

Clear-Sy. B for free. http://www.b4free.com.

F.S. de Boer, K.V. Hindriks, W. van der Hoek, and
J.-J.Ch. Meyer. Agent programming with declarative
goals. In 7th International Workshop on Intelligent

Agents. Agent Theories Architectures and Language,
pages 228-243, 2000.

G. J. Holzmann. The Model Checker SPIN. [EEE
Trans. Softw. Eng., 23:279-295, May 1997 .

B. Mermet and G. Simon. GDT4MAS: an extension
of the GDT model to specify and to verify MultiA-
gent Systems. In Decker et al., editor, Proc. of AAMAS
2009, pages 505-512, 2009.

B. Mermet and G. Simon. Specifying and verifying
holonic agents with gdt4mas. Int. Journal of Agent-
Oriented Software Engineering, 4(3):281-303, 2010.

B. Mermet and G. Simon. Specifying recursive agents
with gdts. Autonomous agents and Multi-Agent Sys-
tems, 23(2):273-301, 2011.

B. Mermet, G. Simon, A. Saval, and B. Zanuttini.
Specifying, verifying and implementing a MAS: A

30

[Occ00]

[OFT04]
[SRI]
[TMBDLKO04]

case study. In M. Dastani, A. E. F. Segrouchni,
A. Ricci, and M. Winikoff, editors, Post-Proc. of Pro-
MAS 07, number 4908 in Lecture Notes in Artificial
Intelligence, pages 172—-189. Springer, 2007.

M. Occello. Towards a generic recursive agent model.
In Int. Conf- on Artificial Intelligence, pages 649—654,
2000.

Systémes Multi-Agents, volume29 ofARAGO.OFTA, 2004.
SRI International. PVS. http://pvs.csl.sri.com.

Y. Thierry-Mieg, S. Baarir, A. Duret-Lutz, and F. Ko-
rdon. Nouvelles techniques de model-checking pour
la vérification de systemes complexes. Revue Génie
Logiciel, 69:17-23, 2004.

