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Abstract
Fungus-growing attine ants are under constant threat from
fungal pathogens such as the specialized mycoparasite
Escovopsis, which uses combined physical and chemical
attack strategies to prey on the fungal gardens of the ants. In
defence, some species assemble protective microbiomes on
their exoskeletons that contain antimicrobial-producing Acti-
nobacteria. Underlying this network of mutualistic and antag-
onistic interactions are an array of chemical signals.
Escovopsis weberi produces the shearinine terpene-indole
alkaloids, which affect ant behaviour, diketopiperazines to
combat defensive bacteria, and other small molecules that
inhibit the fungal cultivar. Pseudonocardia and Streptomyces
mutualist bacteria produce depsipeptide and polyene macro-
lide antifungals active against Escovopsis spp. The ant nest
metabolome is further complicated by competition between
defensive bacteria, which produce antibacterials active against
even closely related species.
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Introduction: farmers at war
Ants of the tribe Attini cultivate basidiomycete fungi in
a process akin to human agriculture that evolved around
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50e60 million years ago [1]. The Attini can be divided
according to their fungal cultivars, which include species
across the tribe Leucocoprineae. The lower attines tend
to have less specialized fungal cultivars, which they feed
with dead biomass, including vegetative debris and

insect corpses [2]. The higher attines have specialized
obligate fungal cultivars which have developed hyphal
swellings known as gongylidia that provide a rich source
of nutrients for the colony [3]. The leafcutter ants are
the most highly derived attines and comprise the genera
Atta and Acromyrmex [2]. They mainly cultivate Leucoa-
garicus gongylophorus [4], a polyploid clone, which is
transmitted vertically between nests [5]. The ants
actively cut fresh leaf material to feed to their cultivar,
which provides the sole food source for the ant larvae
[2].

The most significant threat to this mutualistic
endeavour comes from specialized fungal pathogens in
the genus Escovopsis, which have co-evolved with attines
and are highly adapted for a mycoparasitic lifestyle [6].
More recently, Escovopsiodes have been identified as a
further distinct mycoparasitic genus [7]. If left un-
checked, Escovopsis spp. can overrun a nest leading to
devastating colony collapse [8]. The most well-studied
species is Escovopsis weberi [9], commonly found in the
nests of leafcutter ants. The ants carefully groom and

weed their fungal gardens to remove Escovopsis and other
pathogens [2], modifying their hygiene strategy ac-
cording to the growth stage of the pathogen [10]. Many
attines also house and feed defensive bacteria on their
cuticles, initially a single vertically transmitted Pseudo-
nocardia phylotype transferred to newly eclosed workers
and virgin queens from their sisters and/or the fungal
cultivar [11]. Other actinomycetes, such as Streptomyces
species, are horizontally acquired from the environment
to form a protective microbiome [12]. These bacteria
produce antifungal compounds that are active against

Escovopsis spp., as well as antibacterials to outcompete
other defensive bacteria (Table 1) [13]. Within the
leafcutters, there has been an interesting divergence,
with only Acromyrmex maintaining a protective micro-
biome, whereas Atta rely on their own endogenous
chemical defences [14]. However, Escovopsis comes
armed with a chemical war chest of its own that includes
antibacterial, insecticidal and antifungal specialized
www.sciencedirect.com
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Table 1

Summary of bioactive compounds isolated from fungus-growing ant mutualists and pathogens.

Producer Ant Species Compound Bioactivity References

Escovopsis
E. weberi Acromyrmex octospinosus Shearinine L (1) - A. octospinosus ants chose not to eat

1-impregnated oat flakes
[15]

E. weberi Acromyrmex echinatior Shearinine D (2) - Adverse effect on A. echinatior ant
behaviour, lethal at high
concentrations.

- Active against Pseudonocardia
echinatior and Pseudonocardia
octospinosus strains isolated from A.
echinatior colonies.

[15,16]

E. weberi
E. aspergilloides

A. echinatior
Trachomyrmex cornetzi

Melinacidin IV (3) - Active against P. echinatior and P.
octospinosus strains isolated from A.
echinatior colonies.

[16]

E. weberi
E. aspergilloides

A. echinatior & A.
octospinosus
T. cornetzi

Emodin (4) - Active against Leucoagaricus
gongylophorus and Streptomyces
strains isolated from leafcutter ant
nests.

[15,16]

E. weberi A. echinatior Cycloarthropsone (5) - Active against L. gongylophorus. [15]
Streptomyces
S4, Ao10 A. octospinosus Candicidin D (9) - Active against E. weberi but not

against L. gongylophorus.
[36,38,40]

Ae32_2, S4, Ao10
Av28_2, Av28_3 Av25_1

A. echinatior
A. octospinosus
Acromyrmex volcanus

Antimycin A1-A4 (10a-d) - Active against E. weberi. and L.
gongylophorus.

[39,40]

ICBG292 Cyphomyrmex sp. Mer-A2026B (11)
/Piericidin-A1 (12)

- Active against different Escovopsis
spp.

- Antileishmanial activity.

[41]

Av25_2 A. volcanus Actinomycin D (16)
Actinomycin X2 (17)

- Active against Pseudonocardia and
Streptomyces spp.

[39]

Pseudonocardia
CC011120-4 Apterostigma dentigerum Dentigerumycin A (6) - Antifungal activity against E. weberi [32]
P. octospinosus P1 A. octospinosus Nystatin P1 (7) - Antifungal activity against E. weberi [29,36]
HH130629-09, HH130630-

07
Apterostigma sp. Selvamicin (8) - Antifungal activity, activity against E.

weberi not reported
[37]

BCI2 A. dentigerum 9-methoxyrebeccamycin (13) - Inhibits other Pseudonocardia strains. [47]
17SE-9 Trachymyrmex

septentrionalis
GE37468 (14) - Inhibits Pseudonacardia spp. from the

same ant nest.
[48]

EC080529-01 A. dentigerum 6-deoxy-8-O-methylrabelomycin
(15)

- Antibacterial and antimalarial activity [49]
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metabolites that target each component of the ant-
microbe symbiosis (Table 1) [15,16].

Thus, there exists a highly co-evolved, complex network
of mutualistic and antagonistic relationships within the
nests of fungus-farming ants, Figure 1. Here, we review

recent advances in our understanding of the sophisti-
cated attack and defence strategies utilised, focussing
on the complex array of chemical signals underpinning
each interaction.
Under attack
Physical attack
The mechanism of parasitism by Escovopsis and Esco-
vopsioides species requires the pathogens to have phys-
ical contact with the cultivar fungus. Early observations
reported that E. weberi grows faster in the presence of
www.sciencedirect.com
L. gongylophorus and causes hyphal degradation. In
addition, different Escovopsis isolates vary in the level of
selectivity toward the cultivar fungus [17]. Building on
this work, Marfetán and colleagues [18] showed that all
E. weberi strains were, at different levels, virulent to-
wards L. gongylophorus and that the most virulent isolates

could develop hook-like structures that were used to
attach to the fungal cultivar. More recently, several
Escovopsis species and two Escovopsioides nivea strains
were reported to inhibit the growth of L. gongylophorus in
co-cultivation experiments where both the pathogen
and the garden fungus had a drastic change in pigmen-
tation [9,19]. In addition, when Escovopsis spp. were
grown on water agar with or without a small colony of
L. gongylophorus it was found that the Escovopsis spp. grew
only on co-cultivation plates and the pathogen grew
directly towards L. gongylophorus forming hyphal bridges,

and outgrew it within 48 h [18].
Current Opinion in Chemical Biology 2020, 59:172–181
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Figure 1

A network of mutualistic and antagonistic interactions exists in the nests of fungus-growing ants. Representative examples of each member of the
symbiotic network are shown, with Pseudonocardia hyphae imaged by scanning electron microscopy (SEM). Red lines indicate antagonistic interactions,
green arrows indicate mutualistic interactions and the green dashed arrow indicates indirect mutualism.
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Chemical attack
While the threat posed by Escovopsis species to fungus-
growing ants has been well-established, the specialized
metabolites it utilises to modulate this interaction have
only recently begun to be uncovered, Figure 2. Indirect
evidence came from the first genome sequence of
E. weberi and associated RNA-sequencing data which
identified that a biosynthetic gene cluster (BGC) for a
polyketide synthase-derived specialized metabolite was
upregulated when E. weberi and L. gongylophorus are co-
cultured [9]. Rodrigues and colleagues reported that
chemical extracts from Escovopsis species and E. nivea
cultures were able to inhibit the growth of
L. gongylophorus and that the extracts obtained from co-
cultures of pathogen and cultivar were generally more
active than extracts from axenic plates of the pathogen
[19]. Another recent study identified the production of
the terpene-indole alkaloid shearinines by Escovopsis sp.
TZ49, using a combination of imaging mass spectrom-
etry and MS/MS molecular networking [20]. In subse-
quent separate studies, shearinine metabolites were
shown to be upregulated when E. weberi was grown in
the presence of L. gongylophorus [16], and several

shearinine congeners were isolated and characterised
from a range of Escovopsis strains (six E. weberi isolates
Current Opinion in Chemical Biology 2020, 59:172–181
and one Escovopsis aspergilloides) [15,16]. Worker ants
learned not to choose oat flakes impregnated with
shearinine L (1), but there was no obvious effect on
waste production or worker mortality in the colony [15].
However, shearinine D (2) supplied as a glucose solution
in the absence of the fungal cultivar adversely affected
the behaviour of worker ants and was ultimately lethal.
Compound 2 was also found to be elevated in the tissues
of worker ants in a captive colony that suffered a natural
E. weberi outbreak [16]. This is consistent with the

previously documented roles of terpene-indole alkaloids
acting as feeding deterrents and modulators of ion
channels in various insects [21]. Furthermore, 2 was
active against mutualist Pseudonocardia strains isolated
from Acromyrmex echinatior [16] whereas 1 was not active
against L. gongylophorus or Pseudonocardia Ao19 isolated
from Acromyrmex octospinosus [15]. The variation of re-
sponses observed for Pseudonocardia species to these
different shearinine congeners may be due to their
structural variation or could be attributed to the
different methods of antimicrobial testing used.

Production of the epipolythiodiketopiperazine (ETP)
melinacidin IV (3), a known antimicrobial and cytotoxic
agent, was also increased when E. weberi was co-cultured
www.sciencedirect.com
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Figure 2
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a b

a) Antagonistic interactions of Escovopsis weberi with other organisms. Representative images of each symbiont are shown with red lines indi-
cating antagonistic interactions. Specialized metabolites are represented with coloured shapes, as shown in b. b) Chemical compounds isolated from
E. weberi.Main classes identified thus far are the shearinine terpene-indole alkaloids and the melinacidin epipolythiodiketopiperazines (ETPs), as well as
other polyketide metabolites such as cycloarthropsone and the anthraquinone emodin.
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with L. gongylophorus and was shown to inhibit the
growth of A. echinatior mutualist Pseudonocardia species
[16]. Two other metabolites were isolated from
E. weberi, the anthraquinone emodin (4) and the poly-
ketide cycloarthropsone (5) [15,16], both of which
inhibit the growth of the cultivar fungus L. gongylophorus.
Compound 4 is also produced by E. aspergilloides and
inhibits the growth of several streptomycete leafcutter
ant mutualists [15].

There have been several reports of the isolation of black

yeast-like fungi in the order Chaetothyriales from the
cuticles of fungus-growing ants, a potential additional
player in the symbiotic network [21e24]. It has been
proposed that the black yeasts could indirectly benefit
the fungal pathogen as they were shown to inhibit the
growth of ant mutualist Pseudonocardia in vitro [25].
However, phylogenetic analyses suggest they are not
www.sciencedirect.com
particularly specialized in their interactions with
fungus-growing ants [26].
Defence
Microbial defences
A highly effective defensive strategy utilised by fungus-
growing ants is the assembly of a protective microbiome
on the external surface of their exoskeletons, which is
dominated by antimicrobial-producing actinobacteria
[27]. In addition to protection of the fungal cultivar
from Escovopsis attack, cuticular microbiomes have been
shown to protect worker ants from infection by the
entomopathogenic fungus Metarhizium anisopliae [28]
and are proposed to help shape the cuticular micro-
biome by excluding non-mutualist bacteria [29]. The
presence of the cuticular microbiome may also serve as a

physical barrier against fungal infection [30].
Current Opinion in Chemical Biology 2020, 59:172–181
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Figure 3
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a

b

a) Interactions between defensive Actinobacteria and Escovopsis weberi. The protective microbiome is visible as a white coating on the integument of an
Acromyrmex ant. Representative images of each symbiont are shown with red lines indicating antagonistic interactions. Compounds are produced bymutualistic
bacteria as defence/attack against both the fungal pathogen and competitors. Specialized metabolites are represented with coloured shapes according to b.
Production of compounds active against streptomycete bacteria by Psuedonocardia spp. has not been reported. b) Specializedmetabolites produced by
mutualisticbacteria.Themainclassesarenon-ribosomalpeptides (NRPs), suchasthedepsipeptides,which includedentigerumycinA6andtheactinomycins16
and17. Theantifungalpolyenemacrolides includenystatinP17, candicidinD9andselvamicin8, the latterhavinganapparentlynovelmodeofaction.Theactivityof
8 and 6-deoxy-8-O-methylrabelomycin 15 against species from the nests of fungus-growing ants has not been reported.
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The most well-studied bacterial symbionts belong to
the Pseudonocardia genus, and many attines vertically
transmit a single strain of Pseudonocardia [12]. The
bacteria grow in and around the openings of specialized
crypts on the ant cuticle and are proposed to feed on
secretions from subcuticular glands [27]. The presence
of Pseudonocardia species greatly improves the suppres-
sion of E. weberi infections in leafcutter colonies [30].

The bioactivity of mutualistic Pseudonocardia strains
against Escovopsis spp. has been recapitulated in vitro
[31], and several antifungal compounds have been
identified.

Pseudonocardia produce two main classes of antifungal
molecules: cyclic depsipeptides and polyene macrolides,
Figure 3. The cyclic piperazine-containing depsipeptide
dentigerumycin A (6) is produced by a Pseudonocardia
strain isolated from the lower attine Apterostigma denti-
gerum. Dentigerumycin A 6 is of mixed polyketide/non-

ribosomal peptide origin and is active against Escovopsis
pathogens but not the fungal cultivar [32]. Interestingly,
dentigerumycin analogues were also identified in
Macrotermes fungus-growing termites [33], and the
closely related gerumycins were isolated from another
A. dentigerum-derived Pseudonocardia species, as well as
strains associated with the higher attine Trachymyrmex
cornetzi, but these did not show antifungal activity
against Escovopsis species [34].

The other main type of compounds are polyketide

polyene macrolides, a well-known class of antifungal
that includes the clinically important drugs nystatin A1
and amphotericin B, which act by binding ergosterol
[35]. A novel polyene antifungal named nystatin P1 (7)
was isolated from the A. octospinosus derived Pseudono-
cardia octospinosus P1 strain. While the structure of 7 has
not been fully elucidated, MS/MS and BGC analysis
strongly suggest that it has an additional hexose
compared to nystatin A1, likely D-mannose linked to the
D-mycosamine moiety via a b-1,4 linkage [29,36].
Selvamicin (8) is another novel polyene macrolide,
identified from a Pseudonocardia strain associated with

A. dentigerum. It exhibits activity against a range of fungal
bioindicator strains; however, its activity against Esco-
vopsis has not been reported. The unusual 4-O-meth-
yldigitoxose glycosylation and the lack of charged groups
(Figure 3) makes 8 distinct from other antifungal poly-
ene compounds, and as it showed no evidence of
ergosterol binding, it appears to have a novel mechanism
of action [37].

Other Actinobacteria have also been recovered from the
exoskeletons of fungus-growing ants, most notably

Streptomyces species. The production of the antifungals
candicidin D (9) and antimycin A1-A4 (10a-d) has been
www.sciencedirect.com
observed for Streptomyces species derived from Acro-
myrmex nests [36,38e40]. Interestingly, 9 was highly
active against E. weberi but not the L. gongylophorus
cultivar [38], whereas 10a-d compounds showed more
generalised activity against both fungal strains [39].
More recently, Streptomyces species isolated from the
exoskeletons of Cyphomyrmex and Acromyrmex rugosus
workers were found to produce the mono-

hydroxypyridines Mer-A2026B (11) and piericidin A
(12), along with the ionophores nigericin and dynactin,
all of which inhibited the growth of various Escovopsis
spp. in challenge experiments on agar. Interestingly,
these compounds were also found to have anti-
leishmanial activity, the first report of antiprotozoal ac-
tivity by ant-nest compounds [41].

Beyond Pseudonocardia and Streptomyces species, yeasts
isolated from Atta texana nests inhibited the growth of
E. weberi, along with generalist pathogenic and ento-

mopathogenic fungi [42]. Bulkholderia species have also
been found in fungus-growing ant nests, and one strain
isolated from an Atta sexdens rubropilosa colony inhibited
the growth of E. weberi and other fungal pathogens, but
not L. gongylophorus [43]. These reports hint at the much
more complex interplay of different species in the nests
of fungus growing ants, beyond the well-studied mutu-
alists and pathogens.

The fungal-symbionts themselves have been implicated
in defence against Escovopsis; however, reports of their

antifungal capabilities have been variable [14]. The
unique yeast cultivar maintained by the lower attine
Cyphomyrmex minutus produced antifungal diketopiper-
azines [44]. More recently, leafcutter cultivars were
shown to inhibitEscovopsis strains from lower attine ants,
such as Apterostigma [45].

Infighting
As well as producing antifungals to suppress host path-
ogens, defensive symbionts produce antibacterials to
outcompete microbial competitors [29]. Indeed,
antagonism between Pseudonocardia strains is common,
and in challenge experiments pairing strains from across
the broader phylogeny, closely related strains were able

to inhibit each other [46]. The indolocarbazole 9-
methoxyrebeccamycin (13) was produced by Pseudono-
cardia isolated from A. dentigerum and inhibited other
Pseudonocardia strains isolated from the same region [47].
Recently, the thiopeptide GE37468 (14) was isolated
from Pseudonocardia associated with Trachymyrmex septen-
trionalis ants and shown to inhibit other Pseudonocardia
strains isolated from Trachymyrmex nests [48]. Another
A. dentigerum-derived Pseudonocardia strain produced the
angucyclines 6-deoxy-8-O-methylrabelomycin (15) and
X-14881, and the glycosylated pseudonocardones. The
Current Opinion in Chemical Biology 2020, 59:172–181
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non-glycosylated compounds showed some antibacterial
and antimalarial activity, but their role in ant nests is yet
to be established [49]. Streptomycetes associated with
fungus-growing ants also produce antibacterials, most
notably actinomycin D (16) and actinomycin X2 (17),
which inhibited both Pseudonocardia and other Strepto-
myces species and acted synergistically with 10a-d com-
pounds. Valinomycins were also produced by several

Streptomyces spp.; however, these were not active against
the ant-nest species tested [39].

Ant defences
In marked contrast to the Acromyrmex leafcutters, Atta
ants lack cuticular actinomycete cultures. Instead, they
rely on phenylacetic acid secretions from their meta-
pleural glands to fend off fungal pathogens. Although
phenylacetic acid is also active against generalist fungal
pathogens, E. weberi appears to be particularly vulner-
able, with strains isolated from lower attine ant genera
being more susceptible than those from higher attines
[50]. The reason for the divergence in disease man-
agement strategies for these close relatives remains

unclear, as do the comparative benefits of chemical
versus ‘biological’ pest control. On the face of it, the
capacity to recruit bacterial symbionts would appear to
offer broader evolutionary adaptability; however, the
limited evidence of naturalEscovopsis outbreaks suggests
that while they are more widespread in Atta colonies,
they lead to colony collapse far less frequently than in
Acromyrmex nests [50].

A range of aldehyde, ketone and alcohol volatiles
detected in metapleural gland secretions of Apterostigma,
Acromyrmex and Atta have been shown to have strong
antibacterial and antifungal activity [51,52]. These
compounds may constitute a further, more generalist
line of defence in the nest.

Defence recruitment
Understanding the role of the Streptomyces strains
commonly isolated from attine cuticles is a crucial next
step. One intriguing hypothesis proposes that the ants
specifically recruit or ‘screen in’ antibiotic-producing
actinomycetes such as Streptomyces species while keep-
ing other bacteria out [12,53]. They achieve this by
providing public resources to create a competitive

environment attractive for bacterial colonisation, and
then use their vertically transmitted Pseudonocardia
mutualist strain to create a demanding environment in
which only antibiotic-producers can colonise and sur-
vive. These Pseudonocardia strains are known to make
broad-spectrum antibacterial molecules that inhibit
most unicellular bacteria, but they do not inhibit
Streptomyces species, which themselves make multiple
antimicrobials and carry multiple antibiotic resistance
Current Opinion in Chemical Biology 2020, 59:172–181
genes [29]. The result is an ant cuticle dominated by
Pseudonocardia and Streptomyces species, which make
several antibacterial and antifungal compounds that are
useful to the ants [54].
Secret weapons
Genome sequencing of bacterial mutualists isolated
from fungus-growing ants has shed light on their un-
tapped biosynthetic potential. Analysis of Pseudonocardia
strains associated with A. echinatior, which split into two
phylotypes Ps1 (species name P. octospinosus) and Ps2
(Pseudonocardia echinatior), showed that Ps2 strains have
the potential to produce new nystatin derivatives that

arise from a novel 3-amino-5-hydroxybenzoic acid
biosynthetic starter unit and encode several bacteriocins
which may be involved in inter-species competition
[29]. Recent population genomic analyses of nearly 50
Pseudonocardia strains isolated from Apterostigma ants
revealed 27 BGC families, including lassopeptides,
siderophores, and terpenes [55,56].

Likewise, although E. weberi has a reduced genome size
consistent with its parasitic lifestyle, genome
sequencing reveals the biosynthetic capabilities of

Escovopsis strains go well beyond what has been observed
in the laboratory, thus far. In E. weberi isolated from Atta
cephalotes 17 putative BGCs were identified [8]. A
further five E. weberi strains isolated from Acromyrmex
and Atta colonies contained 20e23 putative BGCs each,
and in common with the previously sequenced strain,
these mainly comprised terpene, type I polyketide
synthase and non-ribosomal peptide synthetase BGCs
[16].
Conclusions
A multipartite web of mutualistic and antagonistic in-
teractions exists between the symbionts in fungus-
growing ant nests [14]. These ancient systems offer a
gateway to a wealth of chemical diversity created by a 50
million-year-old arms race and provide tractable models
for understanding the functions of specialized metabo-
lites in nature. While the major players are well-
established, recent work suggests that these represent
only a fraction of the many microbes present in these
colonies, and distinguishing symbionts from opportu-

nistic environmental microbes will be important to
develop a full understanding of the interactions at play.
These symbiotic interactions are widespread in the
plant and animal kingdoms and are all likely driven by
chemical communication and chemical warfare. For
example, a Kenyan fungus growing plant-ant system is
already proving to be an exciting resource for the dis-
covery of new chemical diversity [57,58]. Understand-
ing the roles and regulation of microbial specialized
www.sciencedirect.com
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metabolites in their natural habitats is crucial if we are
to unlock and discover the vast range of activities
encoded by these organisms.
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